These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 35221058)
1. Role of cysteine in the improvement of γ-aminobutyric acid production by nonproteolytic Levilactobacillus brevis in coculture with Streptococcus thermophilus. Xiao T; Shah NP J Dairy Sci; 2022 May; 105(5):3883-3895. PubMed ID: 35221058 [TBL] [Abstract][Full Text] [Related]
2. Comparative Peptidomic and Metatranscriptomic Analyses Reveal Improved Gamma-Amino Butyric Acid Production Machinery in Levilactobacillus brevis Strain NPS-QW 145 Cocultured with Streptococcus thermophilus Strain ASCC1275 during Milk Fermentation. Xiao T; Yan A; Huang JD; Jorgensen EM; Shah NP Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33067198 [TBL] [Abstract][Full Text] [Related]
3. Effect of lactose hydrolysis on the milk-fermenting properties of Lactobacillus delbrueckii ssp. bulgaricus 2038 and Streptococcus thermophilus 1131. Yamamoto E; Watanabe R; Ichimura T; Ishida T; Kimura K J Dairy Sci; 2021 Feb; 104(2):1454-1464. PubMed ID: 33309355 [TBL] [Abstract][Full Text] [Related]
4. Effect of fumaric acid on the growth of Lactobacillus delbrueckii ssp. bulgaricus during yogurt fermentation. Yamamoto E; Watanabe R; Tooyama E; Kimura K J Dairy Sci; 2021 Sep; 104(9):9617-9626. PubMed ID: 34099292 [TBL] [Abstract][Full Text] [Related]
5. The effect of glutathione biosynthesis of Streptococcus thermophilus ST-1 on cocultured Lactobacillus delbrueckii ssp. bulgaricus ATCC11842. Xue ZP; Cu X; Xu K; Peng JH; Liu HR; Zhao RT; Wang Z; Wang T; Xu ZS J Dairy Sci; 2023 Feb; 106(2):884-896. PubMed ID: 36460506 [TBL] [Abstract][Full Text] [Related]
6. Degradation of β-casomorphins and identification of degradation products during yoghurt processing using liquid chromatography coupled with high resolution mass spectrometry. Nguyen DD; Busetti F; Johnson SK; Solah VA Food Res Int; 2018 Apr; 106():98-104. PubMed ID: 29580012 [TBL] [Abstract][Full Text] [Related]
7. Role of fumarate reductase on the fermentation properties of Lactobacillus delbrueckii ssp. bulgaricus. Yamamoto E; Tooyama E; Honme Y J Dairy Sci; 2024 Jun; 107(6):3443-3450. PubMed ID: 38216036 [TBL] [Abstract][Full Text] [Related]
8. The critical role of urease in yogurt fermentation with various combinations of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. Yamauchi R; Maguin E; Horiuchi H; Hosokawa M; Sasaki Y J Dairy Sci; 2019 Feb; 102(2):1033-1043. PubMed ID: 30594386 [TBL] [Abstract][Full Text] [Related]
9. Pediocin production in milk by Pediococcus acidilactici in co-culture with Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Somkuti GA; Steinberg DH J Ind Microbiol Biotechnol; 2010 Jan; 37(1):65-9. PubMed ID: 19844751 [TBL] [Abstract][Full Text] [Related]
10. Use of Streptococcus thermophilus for the in situ production of γ-aminobutyric acid-enriched fermented milk. Han M; Liao WY; Wu SM; Gong X; Bai C J Dairy Sci; 2020 Jan; 103(1):98-105. PubMed ID: 31668446 [TBL] [Abstract][Full Text] [Related]
11. Cysteine protected cells from H Xiao T; Zhang D; Tun HM; Shah NP World J Microbiol Biotechnol; 2022 Aug; 38(11):185. PubMed ID: 35972565 [TBL] [Abstract][Full Text] [Related]
12. Dairy Streptococcus thermophilus improves cell viability of Lactobacillus brevis NPS-QW-145 and its γ-aminobutyric acid biosynthesis ability in milk. Wu Q; Law YS; Shah NP Sci Rep; 2015 Aug; 5():12885. PubMed ID: 26245488 [TBL] [Abstract][Full Text] [Related]
13. Comparative transcriptomic analysis of the flavor production mechanism in yogurt by traditional starter strains. Tian H; Huang N; Yao W; Yu H; Yu B; Chen X; Chen C J Dairy Sci; 2024 Aug; 107(8):5402-5415. PubMed ID: 38331185 [TBL] [Abstract][Full Text] [Related]
14. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions. Gandhi A; Shah NP Int J Food Sci Nutr; 2014 Dec; 65(8):937-41. PubMed ID: 25095898 [TBL] [Abstract][Full Text] [Related]
15. Short communication: effect of oxygen on symbiosis between Lactobacillus bulgaricus and Streptococcus thermophilus. Horiuchi H; Sasaki Y J Dairy Sci; 2012 Jun; 95(6):2904-9. PubMed ID: 22612927 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Sørensen KI; Curic-Bawden M; Junge MP; Janzen T; Johansen E Appl Environ Microbiol; 2016 Jun; 82(12):3683-3692. PubMed ID: 27107115 [TBL] [Abstract][Full Text] [Related]
17. Fermentation characteristics and postacidification of yogurt by Streptococcus thermophilus CICC 6038 and Lactobacillus delbrueckii ssp. bulgaricus CICC 6047 at optimal inoculum ratio. Ge Y; Yu X; Zhao X; Liu C; Li T; Mu S; Zhang L; Chen Z; Zhang Z; Song Z; Zhao H; Yao S; Zhang B J Dairy Sci; 2024 Jan; 107(1):123-140. PubMed ID: 37641256 [TBL] [Abstract][Full Text] [Related]
18. Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Makino S; Ikegami S; Kano H; Sashihara T; Sugano H; Horiuchi H; Saito T; Oda M J Dairy Sci; 2006 Aug; 89(8):2873-81. PubMed ID: 16840603 [TBL] [Abstract][Full Text] [Related]
19. [Tracking casein phosphopeptides during fermentation by high performance liquid chromatography-tandem mass spectrometry]. Dong H; Yu Y; Yan J; Jin Y Se Pu; 2017 Jun; 35(6):587-593. PubMed ID: 29048784 [TBL] [Abstract][Full Text] [Related]
20. Reduction of the off-flavor volatile generated by the yogurt starter culture including Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in soymilk. Kaneko D; Igarashi T; Aoyama K J Agric Food Chem; 2014 Feb; 62(7):1658-63. PubMed ID: 24495115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]