These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 35221068)
1. Reducing greenhouse gas emissions through genetic selection in the Australian dairy industry. Richardson CM; Amer PR; Quinton C; Crowley J; Hely FS; van den Berg I; Pryce JE J Dairy Sci; 2022 May; 105(5):4272-4288. PubMed ID: 35221068 [TBL] [Abstract][Full Text] [Related]
2. Mitigation of greenhouse gases in dairy cattle via genetic selection: 2. Incorporating methane emissions into the breeding goal. González-Recio O; López-Paredes J; Ouatahar L; Charfeddine N; Ugarte E; Alenda R; Jiménez-Montero JA J Dairy Sci; 2020 Aug; 103(8):7210-7221. PubMed ID: 32475662 [TBL] [Abstract][Full Text] [Related]
3. Estimating methane coefficients to predict the environmental impact of traits in the Australian dairy breeding program. Richardson CM; Amer PR; Hely FS; van den Berg I; Pryce JE J Dairy Sci; 2021 Oct; 104(10):10979-10990. PubMed ID: 34334195 [TBL] [Abstract][Full Text] [Related]
4. Genetic parameters for methane emission traits in Australian dairy cows. Richardson CM; Nguyen TTT; Abdelsayed M; Moate PJ; Williams SRO; Chud TCS; Schenkel FS; Goddard ME; van den Berg I; Cocks BG; Marett LC; Wales WJ; Pryce JE J Dairy Sci; 2021 Jan; 104(1):539-549. PubMed ID: 33131823 [TBL] [Abstract][Full Text] [Related]
5. Methods and consequences of including reduction in greenhouse gas emission in beef cattle multiple-trait selection. Barwick SA; Henzell AL; Herd RM; Walmsley BJ; Arthur PF Genet Sel Evol; 2019 Apr; 51(1):18. PubMed ID: 31035930 [TBL] [Abstract][Full Text] [Related]
6. A methodology framework for weighting genetic traits that impact greenhouse gas emission intensities in selection indexes. Amer PR; Hely FS; Quinton CD; Cromie AR Animal; 2018 Jan; 12(1):5-11. PubMed ID: 28693653 [TBL] [Abstract][Full Text] [Related]
7. Prediction of effects of dairy selection indexes on methane emissions. Zhang X; Amer PR; Jenkins GM; Sise JA; Santos B; Quinton C J Dairy Sci; 2019 Dec; 102(12):11153-11168. PubMed ID: 31587912 [TBL] [Abstract][Full Text] [Related]
8. Prediction of effects of beef selection indexes on greenhouse gas emissions. Quinton CD; Hely FS; Amer PR; Byrne TJ; Cromie AR Animal; 2018 May; 12(5):889-897. PubMed ID: 28988566 [TBL] [Abstract][Full Text] [Related]
9. Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway. Özkan Gülzari Ş; Vosough Ahmadi B; Stott AW Prev Vet Med; 2018 Feb; 150():19-29. PubMed ID: 29406080 [TBL] [Abstract][Full Text] [Related]
10. Greenhouse gas emissions and nitrogen efficiency of dairy cows of divergent economic breeding index under seasonal pasture-based management. Lahart B; Shalloo L; Herron J; O'Brien D; Fitzgerald R; Boland TM; Buckley F J Dairy Sci; 2021 Jul; 104(7):8039-8049. PubMed ID: 33934859 [TBL] [Abstract][Full Text] [Related]
11. Relationship between Dairy Cow Health and Intensity of Greenhouse Gas Emissions. Džermeikaitė K; Krištolaitytė J; Antanaitis R Animals (Basel); 2024 Mar; 14(6):. PubMed ID: 38539927 [TBL] [Abstract][Full Text] [Related]
12. Effect of feed-related farm characteristics on relative values of genetic traits in dairy cows to reduce greenhouse gas emissions along the chain. Van Middelaar CE; Berentsen PB; Dijkstra J; Van Arendonk JA; De Boer IJ J Dairy Sci; 2015 Jul; 98(7):4889-903. PubMed ID: 25912865 [TBL] [Abstract][Full Text] [Related]
13. Methods to determine the relative value of genetic traits in dairy cows to reduce greenhouse gas emissions along the chain. van Middelaar CE; Berentsen PB; Dijkstra J; van Arendonk JA; de Boer IJ J Dairy Sci; 2014; 97(8):5191-205. PubMed ID: 24881792 [TBL] [Abstract][Full Text] [Related]
14. Industrialization Mitigates Greenhouse Gas Intensity in China's Dairy Sector yet May Prove Insufficient to Offset Emissions from Future Production Expansion. Han Y; Peng J; Du Y; Fan X Environ Sci Technol; 2024 Jul; 58(26):11386-11399. PubMed ID: 38872476 [TBL] [Abstract][Full Text] [Related]
15. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach. Zehetmeier M; Baudracco J; Hoffmann H; Heißenhuber A Animal; 2012 Jan; 6(1):154-66. PubMed ID: 22436163 [TBL] [Abstract][Full Text] [Related]
16. Invited review: Phenotypes to genetically reduce greenhouse gas emissions in dairying. de Haas Y; Pszczola M; Soyeurt H; Wall E; Lassen J J Dairy Sci; 2017 Feb; 100(2):855-870. PubMed ID: 27939541 [TBL] [Abstract][Full Text] [Related]
18. Estimating the impact of clinical mastitis in dairy cows on greenhouse gas emissions using a dynamic stochastic simulation model: a case study. Mostert PF; Bokkers EAM; de Boer IJM; van Middelaar CE Animal; 2019 Dec; 13(12):2913-2921. PubMed ID: 31210122 [TBL] [Abstract][Full Text] [Related]
19. Breakeven prices for recording of indicator traits to reduce the environmental impact of milk production. Hansen Axelsson H; Thomasen JR; Sørensen AC; Rydhmer L; Kargo M; Johansson K; Fikse WF J Anim Breed Genet; 2015 Feb; 132(1):30-41. PubMed ID: 25134920 [TBL] [Abstract][Full Text] [Related]
20. Symposium review: Genomic selection for reducing environmental impact and adapting to climate change. Pryce JE; Haile-Mariam M J Dairy Sci; 2020 Jun; 103(6):5366-5375. PubMed ID: 32331869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]