BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35221196)

  • 1. Numerical Study of Acoustic Holograms for Deep-Brain Targeting through the Temporal Bone Window.
    Andrés D; Jiménez N; Benlloch JM; Camarena F
    Ultrasound Med Biol; 2022 May; 48(5):872-886. PubMed ID: 35221196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic Holograms for Bilateral Blood-Brain Barrier Opening in a Mouse Model.
    Jimenez-Gambin S; Jimenez N; Pouliopoulos A; Benlloch JM; Konofagou E; Camarena F
    IEEE Trans Biomed Eng; 2022 Apr; 69(4):1359-1368. PubMed ID: 34570701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers.
    Maimbourg G; Houdouin A; Deffieux T; Tanter M; Aubry JF
    Phys Med Biol; 2018 Jan; 63(2):025026. PubMed ID: 29219124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steering Capabilities of an Acoustic Lens for Transcranial Therapy: Numerical and Experimental Studies.
    Maimbourg G; Houdouin A; Deffieux T; Tanter M; Aubry JF
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):27-37. PubMed ID: 30932823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method to optimize the placement of a single-element transducer for transcranial focused ultrasound.
    Park TY; Pahk KJ; Kim H
    Comput Methods Programs Biomed; 2019 Oct; 179():104982. PubMed ID: 31443869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of near-skull brain tissue with a focused device using shear-mode conversion: a numerical study.
    Pichardo S; Hynynen K
    Phys Med Biol; 2007 Dec; 52(24):7313-32. PubMed ID: 18065841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of ultrasound propagation through ex-vivo human temporal bone.
    Ammi AY; Mast TD; Huang IH; Abruzzo TA; Coussios CC; Shaw GJ; Holland CK
    Ultrasound Med Biol; 2008 Oct; 34(10):1578-89. PubMed ID: 18456391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation.
    Younan Y; Deffieux T; Larrat B; Fink M; Tanter M; Aubry JF
    Med Phys; 2013 Aug; 40(8):082902. PubMed ID: 23927357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of patient-specific focused ultrasound arrays for non-invasive brain therapy with increased trans-skull transmission and steering range.
    Hughes A; Hynynen K
    Phys Med Biol; 2017 Aug; 62(17):L9-L19. PubMed ID: 28665289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focusing of therapeutic ultrasound through a human skull: a numerical study.
    Sun J; Hynynen K
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1705-15. PubMed ID: 9745750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical investigation of the energy distribution of Low-intensity transcranial focused ultrasound neuromodulation for hippocampus.
    Huang Y; Wen P; Song B; Li Y
    Ultrasonics; 2022 Aug; 124():106724. PubMed ID: 35299039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps.
    Robertson J; Martin E; Cox B; Treeby BE
    Phys Med Biol; 2017 Apr; 62(7):2559-2580. PubMed ID: 28165334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transducer modeling for accurate acoustic simulations of transcranial focused ultrasound stimulation.
    Pasquinelli C; Montanaro H; Lee HJ; Hanson LG; Kim H; Kuster N; Siebner HR; Neufeld E; Thielscher A
    J Neural Eng; 2020 Jul; 17(4):046010. PubMed ID: 32485690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of image homogenisation on simulated transcranial ultrasound propagation.
    Robertson J; Urban J; Stitzel J; Treeby BE
    Phys Med Biol; 2018 Jul; 63(14):145014. PubMed ID: 29897047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random calibration for accelerating MR-ARFI guided ultrasonic focusing in transcranial therapy.
    Liu N; Liutkus A; Aubry JF; Marsac L; Tanter M; Daudet L
    Phys Med Biol; 2015 Feb; 60(3):1069-85. PubMed ID: 25585885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A numerical study on the oblique focus in MR-guided transcranial focused ultrasound.
    Hughes A; Huang Y; Pulkkinen A; Schwartz ML; Lozano AM; Hynynen K
    Phys Med Biol; 2016 Nov; 61(22):8025-8043. PubMed ID: 27779134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic properties across the human skull.
    Riis TS; Webb TD; Kubanek J
    Ultrasonics; 2022 Feb; 119():106591. PubMed ID: 34717144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effects of the Structural and Acoustic Parameters of the Skull Model on Transcranial Focused Ultrasound.
    Zhang H; Zhang Y; Xu M; Song X; Chen S; Jian X; Ming D
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Numerical Method for the Design of 3-D-Printed Holographic Acoustic Lenses for Aberration Correction of Single-Element Transcranial Focused Ultrasound.
    Ferri M; Bravo JM; Redondo J; Sánchez-Pérez JV
    Ultrasound Med Biol; 2019 Mar; 45(3):867-884. PubMed ID: 30600128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.