BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 35221331)

  • 41. CPT2 downregulation triggers stemness and oxaliplatin resistance in colorectal cancer via activating the ROS/Wnt/β-catenin-induced glycolytic metabolism.
    Li H; Chen J; Liu J; Lai Y; Huang S; Zheng L; Fan N
    Exp Cell Res; 2021 Dec; 409(1):112892. PubMed ID: 34688609
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cytosolic HSC20 integrates de novo iron-sulfur cluster biogenesis with the CIAO1-mediated transfer to recipients.
    Kim KS; Maio N; Singh A; Rouault TA
    Hum Mol Genet; 2018 Mar; 27(5):837-852. PubMed ID: 29309586
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of the Cellular Roles of MOCS3 Identifies a MOCS3-Independent Localization of NFS1 at the Tips of the Centrosome.
    Neukranz Y; Kotter A; Beilschmidt L; Marelja Z; Helm M; Gräf R; Leimkühler S
    Biochemistry; 2019 Apr; 58(13):1786-1798. PubMed ID: 30817134
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron-sulfur assembly complex.
    Schmucker S; Martelli A; Colin F; Page A; Wattenhofer-Donzé M; Reutenauer L; Puccio H
    PLoS One; 2011 Jan; 6(1):e16199. PubMed ID: 21298097
    [TBL] [Abstract][Full Text] [Related]  

  • 45. circHIPK3 promotes oxaliplatin-resistance in colorectal cancer through autophagy by sponging miR-637.
    Zhang Y; Li C; Liu X; Wang Y; Zhao R; Yang Y; Zheng X; Zhang Y; Zhang X
    EBioMedicine; 2019 Oct; 48():277-288. PubMed ID: 31631038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry.
    Bridwell-Rabb J; Fox NG; Tsai CL; Winn AM; Barondeau DP
    Biochemistry; 2014 Aug; 53(30):4904-13. PubMed ID: 24971490
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Targeting hexokinase 2 increases the sensitivity of oxaliplatin by Twist1 in colorectal cancer.
    Zhang B; Chan SH; Liu XQ; Shi YY; Dong ZX; Shao XR; Zheng LY; Mai ZY; Fang TL; Deng LZ; Zhou DS; Chen SN; Li M; Zhang XD
    J Cell Mol Med; 2021 Sep; 25(18):8836-8849. PubMed ID: 34378321
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hypermethylated and downregulated MEIS2 are involved in stemness properties and oxaliplatin-based chemotherapy resistance of colorectal cancer.
    Wang X; Ghareeb WM; Zhang Y; Yu Q; Lu X; Huang Y; Huang S; Sun Y; Chi P
    J Cell Physiol; 2019 Aug; 234(10):18180-18191. PubMed ID: 30859572
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nfs1 cysteine desulfurase protein complexes and phosphorylation sites as assessed by mass spectrometry.
    Rocha AG; Knight SAB; Pandey A; Yoon H; Pain J; Pain D; Dancis A
    Data Brief; 2017 Dec; 15():775-799. PubMed ID: 29159215
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fe-S cluster biogenesis in isolated mammalian mitochondria: coordinated use of persulfide sulfur and iron and requirements for GTP, NADH, and ATP.
    Pandey A; Pain J; Ghosh AK; Dancis A; Pain D
    J Biol Chem; 2015 Jan; 290(1):640-57. PubMed ID: 25398879
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioactive Peptides Sensitize Cells to Anticancer Effects of Oxaliplatin in Human Colorectal Cancer Xenografts in Nude Mice.
    Li X; Xia L; Ouyang X; Suyila Q; Su L; Su X
    Protein Pept Lett; 2019; 26(7):512-522. PubMed ID: 30950338
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Suppressing the KIF20A/NUAK1/Nrf2/GPX4 signaling pathway induces ferroptosis and enhances the sensitivity of colorectal cancer to oxaliplatin.
    Yang C; Zhang Y; Lin S; Liu Y; Li W
    Aging (Albany NY); 2021 Mar; 13(10):13515-13534. PubMed ID: 33819186
    [TBL] [Abstract][Full Text] [Related]  

  • 53. N-myc downstream-regulated gene 1 promotes oxaliplatin-triggered apoptosis in colorectal cancer cells via enhancing the ubiquitination of Bcl-2.
    Yang X; Zhu F; Yu C; Lu J; Zhang L; Lv Y; Sun J; Zheng M
    Oncotarget; 2017 Jul; 8(29):47709-47724. PubMed ID: 28537875
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A role for ceramide glycosylation in resistance to oxaliplatin in colorectal cancer.
    Madigan JP; Robey RW; Poprawski JE; Huang H; Clarke CJ; Gottesman MM; Cabot MC; Rosenberg DW
    Exp Cell Res; 2020 Mar; 388(2):111860. PubMed ID: 31972222
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MEG3 is a prognostic factor for CRC and promotes chemosensitivity by enhancing oxaliplatin-induced cell apoptosis.
    Li L; Shang J; Zhang Y; Liu S; Peng Y; Zhou Z; Pan H; Wang X; Chen L; Zhao Q
    Oncol Rep; 2017 Sep; 38(3):1383-1392. PubMed ID: 28731151
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modifications of the lipoamide-containing mitochondrial subproteome in a yeast mutant defective in cysteine desulfurase.
    Onder O; Yoon H; Naumann B; Hippler M; Dancis A; Daldal F
    Mol Cell Proteomics; 2006 Aug; 5(8):1426-36. PubMed ID: 16684766
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heterogeneous nuclear ribonucleoprotein L facilitates recruitment of 53BP1 and BRCA1 at the DNA break sites induced by oxaliplatin in colorectal cancer.
    Hu W; Lei L; Xie X; Huang L; Cui Q; Dang T; Liu GL; Li Y; Sun X; Zhou Z
    Cell Death Dis; 2019 Jul; 10(8):550. PubMed ID: 31320608
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The c-Myc/miR-27b-3p/ATG10 regulatory axis regulates chemoresistance in colorectal cancer.
    Sun W; Li J; Zhou L; Han J; Liu R; Zhang H; Ning T; Gao Z; Liu B; Chen X; Ba Y
    Theranostics; 2020; 10(5):1981-1996. PubMed ID: 32104496
    [TBL] [Abstract][Full Text] [Related]  

  • 59. KIF18b-dependent hypomethylation of PARPBP gene promoter enhances oxaliplatin resistance in colorectal cancer.
    Hong B; Lu R; Lou W; Bao Y; Qiao L; Hu Y; Liu K; Chen J; Bao D; Ye M; Fang Z; Gong C; Zhang X
    Exp Cell Res; 2021 Oct; 407(2):112827. PubMed ID: 34508743
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin.
    Gervason S; Larkem D; Mansour AB; Botzanowski T; Müller CS; Pecqueur L; Le Pavec G; Delaunay-Moisan A; Brun O; Agramunt J; Grandas A; Fontecave M; Schünemann V; Cianférani S; Sizun C; Tolédano MB; D'Autréaux B
    Nat Commun; 2019 Aug; 10(1):3566. PubMed ID: 31395877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.