BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35221892)

  • 1. Hierarchical Synchronization Estimation of Low- and High-Order Functional Connectivity Based on Sub-Network Division for the Diagnosis of Autism Spectrum Disorder.
    Zhao F; Han Z; Cheng D; Mao N; Chen X; Li Y; Fan D; Liu P
    Front Neurosci; 2021; 15():810431. PubMed ID: 35221892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing high-order functional networks based on hypergraph for diagnosis of autism spectrum disorders.
    Yang J; Wang F; Li Z; Yang Z; Dong X; Han Q
    Front Neurosci; 2023; 17():1257982. PubMed ID: 37719159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing Multi-View High-Order Functional Connectivity Networks for Diagnosis of Autism Spectrum Disorder.
    Zhao F; Zhang X; Thung KH; Mao N; Lee SW; Shen D
    IEEE Trans Biomed Eng; 2022 Mar; 69(3):1237-1250. PubMed ID: 34705632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnosis of Autism Spectrum Disorder Using Central-Moment Features From Low- and High-Order Dynamic Resting-State Functional Connectivity Networks.
    Zhao F; Chen Z; Rekik I; Lee SW; Shen D
    Front Neurosci; 2020; 14():258. PubMed ID: 32410930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Estimation of Low- and High-Order Functional Connectivity for Identifying Mild Cognitive Impairment.
    Zhou Y; Qiao L; Li W; Zhang L; Shen D
    Front Neuroinform; 2018; 12():3. PubMed ID: 29467643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing high-order functional connectivity network based on central moment features for diagnosis of autism spectrum disorder.
    Xie Q; Zhang X; Rekik I; Chen X; Mao N; Shen D; Zhao F
    PeerJ; 2021; 9():e11692. PubMed ID: 34268010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning to Fuse Multiple Brain Functional Networks for Automated Autism Identification.
    Zhang C; Ma Y; Qiao L; Zhang L; Liu M
    Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Sparsity and Modularity of High-Order Functional Connectivity Networks for MCI and ASD Identification.
    Zhou Y; Zhang L; Teng S; Qiao L; Shen D
    Front Neurosci; 2018; 12():959. PubMed ID: 30618582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Scale Graph Representation Learning for Autism Identification With Functional MRI.
    Chu Y; Wang G; Cao L; Qiao L; Liu M
    Front Neuroinform; 2021; 15():802305. PubMed ID: 35095453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning Brain Connectivity Sub-networks by Group- Constrained Sparse Inverse Covariance Estimation for Alzheimer's Disease Classification.
    Li Y; Liu J; Huang J; Li Z; Liang P
    Front Neuroinform; 2018; 12():58. PubMed ID: 30258358
    [No Abstract]   [Full Text] [Related]  

  • 11. Estimating sparse functional connectivity networks via hyperparameter-free learning model.
    Sun L; Xue Y; Zhang Y; Qiao L; Zhang L; Liu M
    Artif Intell Med; 2021 Jan; 111():102004. PubMed ID: 33461688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal-spatial dynamic functional connectivity analysis in schizophrenia classification.
    Pan C; Yu H; Fei X; Zheng X; Yu R
    Front Neurosci; 2022; 16():965937. PubMed ID: 36061606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiview hyperedge-aware hypergraph embedding learning for multisite, multiatlas fMRI based functional connectivity network analysis.
    Wang W; Xiao L; Qu G; Calhoun VD; Wang YP; Sun X
    Med Image Anal; 2024 May; 94():103144. PubMed ID: 38518530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating Functional Connectivity Networks via Low-Rank Tensor Approximation With Applications to MCI Identification.
    Jiang X; Zhang L; Qiao L; Shen D
    IEEE Trans Biomed Eng; 2020 Jul; 67(7):1912-1920. PubMed ID: 31675312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical Graph Convolutional Network Built by Multiscale Atlases for Brain Disorder Diagnosis Using Functional Connectivity.
    Liu M; Zhang H; Shi F; Shen D
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; PP():. PubMed ID: 37339027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Unit-Based Personalized Fingerprint Feature Selection Strategy for Dynamic Functional Connectivity Networks.
    Zhao F; Chen Z; Rekik I; Liu P; Mao N; Lee SW; Shen D
    Front Neurosci; 2021; 15():651574. PubMed ID: 33828457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnosis of Autism Spectrum Disorders Using Multi-Level High-Order Functional Networks Derived From Resting-State Functional MRI.
    Zhao F; Zhang H; Rekik I; An Z; Shen D
    Front Hum Neurosci; 2018; 12():184. PubMed ID: 29867410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying depression disorder using multi-view high-order brain function network derived from electroencephalography signal.
    Zhao F; Gao T; Cao Z; Chen X; Mao Y; Mao N; Ren Y
    Front Comput Neurosci; 2022; 16():1046310. PubMed ID: 36387303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain functional connectivity analysis based on multi-graph fusion.
    Gan J; Peng Z; Zhu X; Hu R; Ma J; Wu G
    Med Image Anal; 2021 Jul; 71():102057. PubMed ID: 33957559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI.
    Wang M; Huang J; Liu M; Zhang D
    Med Image Anal; 2021 Jul; 71():102063. PubMed ID: 33910109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.