These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 35221938)

  • 1. Synapse Maturation and Developmental Impairment in the Medial Nucleus of the Trapezoid Body.
    Chokr SM; Milinkeviciute G; Cramer KS
    Front Integr Neurosci; 2022; 16():804221. PubMed ID: 35221938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous Cholinergic Signaling Modulates Sound-Evoked Responses of the Medial Nucleus of the Trapezoid Body.
    Zhang C; Beebe NL; Schofield BR; Pecka M; Burger RM
    J Neurosci; 2021 Jan; 41(4):674-688. PubMed ID: 33268542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic Inhibition of Medial Olivocochlear Efferent Neurons by Neurons of the Medial Nucleus of the Trapezoid Body.
    Torres Cadenas L; Fischl MJ; Weisz CJC
    J Neurosci; 2020 Jan; 40(3):509-525. PubMed ID: 31719165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microglia Regulate Pruning of Specialized Synapses in the Auditory Brainstem.
    Milinkeviciute G; Henningfield CM; Muniak MA; Chokr SM; Green KN; Cramer KS
    Front Neural Circuits; 2019; 13():55. PubMed ID: 31555101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental profiles of the intrinsic properties and synaptic function of auditory neurons in preterm and term baboon neonates.
    Kim SE; Lee SY; Blanco CL; Kim JH
    J Neurosci; 2014 Aug; 34(34):11399-404. PubMed ID: 25143619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CX3CR1 mutation alters synaptic and astrocytic protein expression, topographic gradients, and response latencies in the auditory brainstem.
    Milinkeviciute G; Chokr SM; Castro EM; Cramer KS
    J Comp Neurol; 2021 Aug; 529(11):3076-3097. PubMed ID: 33797066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory projections from the ventral nucleus of the trapezoid body to the medial nucleus of the trapezoid body in the mouse.
    Albrecht O; Dondzillo A; Mayer F; Thompson JA; Klug A
    Front Neural Circuits; 2014; 8():83. PubMed ID: 25120436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat.
    Guinan JJ; Li RY
    Hear Res; 1990 Nov; 49(1-3):321-34. PubMed ID: 2292504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remodelling at the calyx of Held-MNTB synapse in mice developing with unilateral conductive hearing loss.
    Grande G; Negandhi J; Harrison RV; Wang LY
    J Physiol; 2014 Apr; 592(7):1581-600. PubMed ID: 24469075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs.
    Koka K; Tollin DJ
    Front Neural Circuits; 2014; 8():144. PubMed ID: 25565971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recurrent Inhibition to the Medial Nucleus of the Trapezoid Body in the Mongolian Gerbil (Meriones Unguiculatus).
    Dondzillo A; Thompson JA; Klug A
    PLoS One; 2016; 11(8):e0160241. PubMed ID: 27489949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and functional continuum underlying heterogeneity in the spiking fidelity at the calyx of Held synapse in vitro.
    Grande G; Wang LY
    J Neurosci; 2011 Sep; 31(38):13386-99. PubMed ID: 21940432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SK Channels Regulate Resting Properties and Signaling Reliability of a Developing Fast-Spiking Neuron.
    Zhang Y; Huang H
    J Neurosci; 2017 Nov; 37(44):10738-10747. PubMed ID: 28982705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and maturation of the calyx of Held.
    Nakamura PA; Cramer KS
    Hear Res; 2011 Jun; 276(1-2):70-8. PubMed ID: 21093567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presynaptic Diversity Revealed by Ca
    Lujan B; Dagostin A; von Gersdorff H
    J Neurosci; 2019 Apr; 39(16):2981-2994. PubMed ID: 30679394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topographic map refinement and synaptic strengthening of a sound localization circuit require spontaneous peripheral activity.
    Müller NIC; Sonntag M; Maraslioglu A; Hirtz JJ; Friauf E
    J Physiol; 2019 Nov; 597(22):5469-5493. PubMed ID: 31529505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relation of the developing calyx of Held synapse in vivo.
    Sierksma MC; Slotman JA; Houtsmuller AB; Borst JGG
    J Physiol; 2020 Oct; 598(20):4603-4619. PubMed ID: 33439501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of BMP Signaling for the Formation of Auditory Brainstem Nuclei and Large Auditory Relay Synapses.
    Kronander E; Clark C; Schneggenburger R
    Dev Neurobiol; 2019 Feb; 79(2):155-174. PubMed ID: 30548566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The medial nucleus of the trapezoid body in the gerbil is more than a relay: comparison of pre- and postsynaptic activity.
    Kopp-Scheinpflug C; Lippe WR; Dörrscheidt GJ; Rübsamen R
    J Assoc Res Otolaryngol; 2003 Mar; 4(1):1-23. PubMed ID: 12098017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid-Sensing Ion Channels Activated by Evoked Released Protons Modulate Synaptic Transmission at the Mouse Calyx of Held Synapse.
    González-Inchauspe C; Urbano FJ; Di Guilmi MN; Uchitel OD
    J Neurosci; 2017 Mar; 37(10):2589-2599. PubMed ID: 28159907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.