These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35221958)

  • 1. MPPTM: A Bio-Inspired Approach for Online Path Planning and High-Accuracy Tracking of UAVs.
    Yi X; Zhu A; Yang SX
    Front Neurorobot; 2021; 15():798428. PubMed ID: 35221958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments.
    Yang Z; Li J; Yang L; Wang Q; Li P; Xia G
    Math Biosci Eng; 2023 Jan; 20(1):145-178. PubMed ID: 36650761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple-Target Homotopic Quasi-Complete Path Planning Method for Mobile Robot Using a Piecewise Linear Approach.
    Diaz-Arango G; Vazquez-Leal H; Hernandez-Martinez L; Jimenez-Fernandez VM; Heredia-Jimenez A; Ambrosio RC; Huerta-Chua J; De Cos-Cholula H; Hernandez-Mendez S
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precision-Driven Multi-Target Path Planning and Fine Position Error Estimation on a Dual-Movement-Mode Mobile Robot Using a Three-Parameter Error Model.
    Ji J; Zhao JS; Misyurin SY; Martins D
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning.
    Yu J; Su Y; Liao Y
    Front Neurorobot; 2020; 14():63. PubMed ID: 33132890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Hybrid Path Planning Algorithm and a Bio-Inspired Control for an Omni-Wheel Mobile Robot.
    Kim C; Suh J; Han JH
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neural network approach to complete coverage path planning.
    Yang SX; Luo C
    IEEE Trans Syst Man Cybern B Cybern; 2004 Feb; 34(1):718-25. PubMed ID: 15369113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Analysis and Path Planning of a Turtle-Inspired Amphibious Spherical Robot.
    Zheng L; Tang Y; Guo S; Ma Y; Deng L
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional Mobile Robot Designed as a Personal Assistant.
    Palacín J; Rubies E; Clotet E; Martínez D
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Optimization and Heuristics Based Online Coverage Path Planning in 3D Environment for UAVs.
    Melo AG; Pinto MF; Marcato ALM; Honório LM; Coelho FO
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement learning-based dynamic obstacle avoidance and integration of path planning.
    Choi J; Lee G; Lee C
    Intell Serv Robot; 2021; 14(5):663-677. PubMed ID: 34642589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Study on Dynamic Motion Planning for Autonomous Vehicles Based on Nonlinear Vehicle Model.
    Tang X; Li B; Du H
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified A-Star Algorithm for Efficient Coverage Path Planning in Tetris Inspired Self-Reconfigurable Robot with Integrated Laser Sensor.
    Le AV; Prabakaran V; Sivanantham V; Mohan RE
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30087274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grid-Based Mobile Robot Path Planning Using Aging-Based Ant Colony Optimization Algorithm in Static and Dynamic Environments.
    Ajeil FH; Ibraheem IK; Azar AT; Humaidi AJ
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32231091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved path planning algorithm based on artificial potential field and primal-dual neural network for surgical robot.
    Hao L; Liu D; Du S; Wang Y; Wu B; Wang Q; Zhang N
    Comput Methods Programs Biomed; 2022 Dec; 227():107202. PubMed ID: 36356385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Convex Optimization Approach to Multi-Robot Task Allocation and Path Planning.
    Lei T; Chintam P; Luo C; Liu L; Jan GE
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Humanoid Path Planning From HRI Perspective: A Scalable Approach via Waypoints With a Time Index.
    Ryu SH; Kang Y; Kim SJ; Lee K; You BJ; Doh NL
    IEEE Trans Cybern; 2013 Feb; 43(1):217-29. PubMed ID: 22893437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Dynamic Path Planning of Mobile Robots: A Novel Hybrid Heuristic Optimization Algorithm.
    Wu Q; Chen Z; Wang L; Lin H; Jiang Z; Li S; Chen D
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ACO-Kinematic: a hybrid first off the starting block.
    Chaudhary K; Prasad A; Chand V; Sharma B
    PeerJ Comput Sci; 2022; 8():e905. PubMed ID: 35494861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time robot path planning based on a modified pulse-coupled neural network model.
    Qu H; Yang SX; Willms AR; Yi Z
    IEEE Trans Neural Netw; 2009 Nov; 20(11):1724-39. PubMed ID: 19775961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.