These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35222536)

  • 1. Generation of Realistic Gene Regulatory Networks by Enriching for Feed-Forward Loops.
    Zhivkoplias EK; Vavulov O; Hillerton T; Sonnhammer ELL
    Front Genet; 2022; 13():815692. PubMed ID: 35222536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions.
    Shojaee A; Huang SC
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37897702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional Network Growing Models Using Motif-Based Preferential Attachment.
    Abdelzaher AF; Al-Musawi AF; Ghosh P; Mayo ML; Perkins EJ
    Front Bioeng Biotechnol; 2015; 3():157. PubMed ID: 26528473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic synchronization of isolated network elements facilitates simulating and inferring gene regulatory networks including stochastic molecular kinetics.
    Hettich J; Gebhardt JCM
    BMC Bioinformatics; 2022 Jan; 23(1):13. PubMed ID: 34986805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal Sparsity Selection Based on an Information Criterion for Accurate Gene Regulatory Network Inference.
    Seçilmiş D; Nelander S; Sonnhammer ELL
    Front Genet; 2022; 13():855770. PubMed ID: 35923701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NSCGRN: a network structure control method for gene regulatory network inference.
    Liu W; Sun X; Yang L; Li K; Yang Y; Fu X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35554485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate determination of causalities in gene regulatory networks by dissecting downstream target genes.
    Jia Z; Zhang X
    Front Genet; 2022; 13():923339. PubMed ID: 36568360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data.
    de Matos Simoes R; Dalleau S; Williamson KE; Emmert-Streib F
    BMC Syst Biol; 2015 May; 9():21. PubMed ID: 25971253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid framework for reverse engineering of robust Gene Regulatory Networks.
    Jafari M; Ghavami B; Sattari V
    Artif Intell Med; 2017 Jun; 79():15-27. PubMed ID: 28602483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CLARIFY: cell-cell interaction and gene regulatory network refinement from spatially resolved transcriptomics.
    Bafna M; Li H; Zhang X
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i484-i493. PubMed ID: 37387180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.
    Xiao X; Zhang W; Zou X
    PLoS One; 2015; 10(3):e0119294. PubMed ID: 25807392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns.
    Arboleda-Rivera JC; Machado-Rodríguez G; Rodríguez BA; Gutiérrez J
    PLoS Comput Biol; 2022 Feb; 18(2):e1009704. PubMed ID: 35157698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. B-cell lymphoma gene regulatory networks: biological consistency among inference methods.
    de Matos Simoes R; Dehmer M; Emmert-Streib F
    Front Genet; 2013; 4():281. PubMed ID: 24379827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Machine Learning Approach to Predict Gene Regulatory Networks in Seed Development in Arabidopsis.
    Ni Y; Aghamirzaie D; Elmarakeby H; Collakova E; Li S; Grene R; Heath LS
    Front Plant Sci; 2016; 7():1936. PubMed ID: 28066488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse engineering genetic networks using nonlinear saturation kinetics.
    Kizhakkethil Youseph AS; Chetty M; Karmakar G
    Biosystems; 2019 Aug; 182():30-41. PubMed ID: 31185246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network.
    Kühn C; Wierling C; Kühn A; Klipp E; Panopoulou G; Lehrach H; Poustka AJ
    BMC Syst Biol; 2009 Aug; 3():83. PubMed ID: 19698179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse engineering module networks by PSO-RNN hybrid modeling.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An algebra-based method for inferring gene regulatory networks.
    Vera-Licona P; Jarrah A; Garcia-Puente LD; McGee J; Laubenbacher R
    BMC Syst Biol; 2014 Mar; 8():37. PubMed ID: 24669835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study of Algorithms Reconstructing Gene Regulatory Network with Resampling and Conditional Mutual Information].
    Liu F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Oct; 33(5):985-90. PubMed ID: 29714955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.