These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 35222652)
1. Biogenic volatile organic compound ambient mixing ratios and emission rates in the Alaskan Arctic tundra. Angot H; McErlean K; Hu L; Millet DB; Hueber J; Cui K; Moss J; Wielgasz C; Milligan T; Ketcherside D; Bret-Harte MS; Helmig D Biogeosciences; 2020; 17(23):6219-6236. PubMed ID: 35222652 [TBL] [Abstract][Full Text] [Related]
2. Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station. Selimovic V; Ketcherside D; Chaliyakunnel S; Wielgasz C; Permar W; Angot H; Millet DB; Fried A; Helmig D; Hu L Atmos Chem Phys; 2022; 22(21):14037-14058. PubMed ID: 37476609 [TBL] [Abstract][Full Text] [Related]
3. Phenological stage of tundra vegetation controls bidirectional exchange of BVOCs in a climate change experiment on a subarctic heath. Baggesen N; Li T; Seco R; Holst T; Michelsen A; Rinnan R Glob Chang Biol; 2021 Jun; 27(12):2928-2944. PubMed ID: 33709612 [TBL] [Abstract][Full Text] [Related]
4. Origin of volatile organic compound emissions from subarctic tundra under global warming. Ghirardo A; Lindstein F; Koch K; Buegger F; Schloter M; Albert A; Michelsen A; Winkler JB; Schnitzler JP; Rinnan R Glob Chang Biol; 2020 Mar; 26(3):1908-1925. PubMed ID: 31957145 [TBL] [Abstract][Full Text] [Related]
5. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient. Svendsen SH; Lindwall F; Michelsen A; Rinnan R Sci Total Environ; 2016 Dec; 573():131-138. PubMed ID: 27552736 [TBL] [Abstract][Full Text] [Related]
6. Contrasting responses of major and minor volatile compounds to warming and gall-infestation in the Arctic willow Salix myrsinites. Swanson L; Li T; Rinnan R Sci Total Environ; 2021 Nov; 793():148516. PubMed ID: 34174616 [TBL] [Abstract][Full Text] [Related]
7. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions. Valolahti H; Kivimäenpää M; Faubert P; Michelsen A; Rinnan R Glob Chang Biol; 2015 Sep; 21(9):3478-88. PubMed ID: 25994223 [TBL] [Abstract][Full Text] [Related]
8. Warming increases isoprene emissions from an arctic fen. Lindwall F; Svendsen SS; Nielsen CS; Michelsen A; Rinnan R Sci Total Environ; 2016 May; 553():297-304. PubMed ID: 26933965 [TBL] [Abstract][Full Text] [Related]
9. Strong isoprene emission response to temperature in tundra vegetation. Seco R; Holst T; Davie-Martin CL; Simin T; Guenther A; Pirk N; Rinne J; Rinnan R Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2118014119. PubMed ID: 36095176 [TBL] [Abstract][Full Text] [Related]
10. Environmental and physiological controls on diurnal and seasonal patterns of biogenic volatile organic compound emissions from five dominant woody species under field conditions. Chen J; Tang J; Yu X Environ Pollut; 2020 Apr; 259():113955. PubMed ID: 32023800 [TBL] [Abstract][Full Text] [Related]
11. Influence of increased nutrient availability on biogenic volatile organic compound (BVOC) emissions and leaf anatomy of subarctic dwarf shrubs under climate warming and increased cloudiness. Ndah F; Valolahti H; Schollert M; Michelsen A; Rinnan R; Kivimäenpää M Ann Bot; 2022 Mar; 129(4):443-455. PubMed ID: 35029638 [TBL] [Abstract][Full Text] [Related]
12. Diel Variation of Biogenic Volatile Organic Compound Emissions--A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light. Lindwall F; Faubert P; Rinnan R PLoS One; 2015; 10(4):e0123610. PubMed ID: 25897519 [TBL] [Abstract][Full Text] [Related]
13. Impacts of elevation on plant traits and volatile organic compound emissions in deciduous tundra shrubs. Simin T; Davie-Martin CL; Petersen J; Høye TT; Rinnan R Sci Total Environ; 2022 Sep; 837():155783. PubMed ID: 35537508 [TBL] [Abstract][Full Text] [Related]
14. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species. Aydin YM; Yaman B; Koca H; Dasdemir O; Kara M; Altiok H; Dumanoglu Y; Bayram A; Tolunay D; Odabasi M; Elbir T Sci Total Environ; 2014 Aug; 490():239-53. PubMed ID: 24858222 [TBL] [Abstract][Full Text] [Related]
15. Seasonal biogenic volatile organic compound emission factors in temperate tree species: Implications for emission estimation and ozone formation. Wu J; Zhang Q; Wang L; Li L; Lun X; Chen W; Gao Y; Huang L; Wang Q; Liu B Environ Pollut; 2024 Nov; 361():124895. PubMed ID: 39243933 [TBL] [Abstract][Full Text] [Related]
16. Potential of Climate Change and Herbivory to Affect the Release and Atmospheric Reactions of BVOCs from Boreal and Subarctic Forests. Yu H; Holopainen JK; Kivimäenpää M; Virtanen A; Blande JD Molecules; 2021 Apr; 26(8):. PubMed ID: 33920862 [TBL] [Abstract][Full Text] [Related]
17. Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests. Yu H; Guenther A; Gu D; Warneke C; Geron C; Goldstein A; Graus M; Karl T; Kaser L; Misztal P; Yuan B Sci Total Environ; 2017 Oct; 595():149-158. PubMed ID: 28384571 [TBL] [Abstract][Full Text] [Related]
18. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012. Geron C; Daly R; Harley P; Rasmussen R; Seco R; Guenther A; Karl T; Gu L Chemosphere; 2016 Mar; 146():8-21. PubMed ID: 26706927 [TBL] [Abstract][Full Text] [Related]
19. Leaf anatomy, BVOC emission and CO2 exchange of arctic plants following snow addition and summer warming. Schollert M; Kivimäenpää M; Michelsen A; Blok D; Rinnan R Ann Bot; 2017 Feb; 119(3):433-445. PubMed ID: 28064192 [TBL] [Abstract][Full Text] [Related]
20. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming. Faubert P; Tiiva P; Rinnan Å; Michelsen A; Holopainen JK; Rinnan R New Phytol; 2010 Jul; 187(1):199-208. PubMed ID: 20456056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]