These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35222729)

  • 1. Mediation of arsenic mobility by organic matter in mining-impacted sediment from sub-Arctic lakes: implications for environmental monitoring in a warming climate.
    Miller CB; Parsons MB; Jamieson HE; Ardakani OH; Patterson RT; Galloway JM
    Environ Earth Sci; 2022; 81(4):137. PubMed ID: 35222729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of late-Holocene climate change on the solid-phase speciation and long-term stability of arsenic in sub-Arctic lake sediments.
    Miller CB; Parsons MB; Jamieson HE; Ardakani OH; Gregory BRB; Galloway JM
    Sci Total Environ; 2020 Mar; 709():136115. PubMed ID: 31887529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic mobility and characterization in lakes impacted by gold ore roasting, Yellowknife, NWT, Canada.
    Van Den Berghe MD; Jamieson HE; Palmer MJ
    Environ Pollut; 2018 Mar; 234():630-641. PubMed ID: 29223820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental investigation of short-term warming on arsenic flux from contaminated sediments of two well-oxygenated subarctic lakes.
    Astles BC; Chételat J; Palmer MJ; Vermaire JC
    PLoS One; 2022; 17(12):e0279412. PubMed ID: 36542618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts on aquatic biota from salinization and metalloid contamination by gold mine tailings in sub-Arctic lakes.
    Perrett M; Sivarajah B; Cheney CL; Korosi JB; Kimpe L; Blais JM; Smol JP
    Environ Pollut; 2021 Jun; 278():116815. PubMed ID: 33689946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic matter control on the distribution of arsenic in lake sediments impacted by ~65years of gold ore processing in subarctic Canada.
    Galloway JM; Swindles GT; Jamieson HE; Palmer M; Parsons MB; Sanei H; Macumber AL; Timothy Patterson R; Falck H
    Sci Total Environ; 2018 May; 622-623():1668-1679. PubMed ID: 29111252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying arsenic post-depositional mobility in lake sediments impacted by gold ore roasting in sub-arctic Canada using inverse diagenetic modelling.
    Leclerc É; Venkiteswaran JJ; Jasiak I; Telford JV; Schultz MDJ; Wolfe BB; Hall RI; Couture RM
    Environ Pollut; 2021 Nov; 288():117723. PubMed ID: 34256286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remobilization of legacy arsenic from sediment in a large subarctic waterbody impacted by gold mining.
    Chételat J; Palmer MJ; Paudyn K; Jamieson H; Amyot M; Harris R; Hesslein R; Pelletier N; Peraza I
    J Hazard Mater; 2023 Jun; 452():131230. PubMed ID: 36989775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depositional influences on porewater arsenic in sediments of a mining-contaminated freshwater lake.
    Toevs G; Morra MJ; Winowiecki L; Strawn D; Polizzotto ML; Fendorf S
    Environ Sci Technol; 2008 Sep; 42(18):6823-9. PubMed ID: 18853795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controls governing the spatial distribution of sediment arsenic concentrations and solid-phase speciation in a lake impacted by legacy mining pollution.
    Schuh CE; Jamieson HE; Palmer MJ; Martin AJ; Blais JM
    Sci Total Environ; 2019 Mar; 654():563-575. PubMed ID: 30447595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh.
    Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC
    Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimony and arsenic speciation, redox-cycling and contrasting mobility in a mining-impacted river system.
    Johnston SG; Bennett WW; Doriean N; Hockmann K; Karimian N; Burton ED
    Sci Total Environ; 2020 Mar; 710():136354. PubMed ID: 32050372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusive Gradients in Thin Films Reveals Differences in Antimony and Arsenic Mobility in a Contaminated Wetland Sediment during an Oxic-Anoxic Transition.
    Arsic M; Teasdale PR; Welsh DT; Johnston SG; Burton ED; Hockmann K; Bennett WW
    Environ Sci Technol; 2018 Feb; 52(3):1118-1127. PubMed ID: 29303570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoulès acid mine drainage, France. A XANES, XRD, and SEM study.
    Morin G; Juillot F; Casiot C; Bruneel O; Personné JC; Elbaz-Poulichet F; Leblanc M; Ildefonse P; Calas G
    Environ Sci Technol; 2003 May; 37(9):1705-12. PubMed ID: 12775038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin.
    Noël V; Boye K; Kukkadapu RK; Bone S; Lezama Pacheco JS; Cardarelli E; Janot N; Fendorf S; Williams KH; Bargar JR
    Sci Total Environ; 2017 Dec; 603-604():663-675. PubMed ID: 28359569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.
    Li W; Joshi SR; Hou G; Burdige DJ; Sparks DL; Jaisi DP
    Environ Sci Technol; 2015 Jan; 49(1):203-11. PubMed ID: 25469633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ high-resolution two-dimensional profiles of redox sensitive metal mobility in sediment-water interface and porewater from estuarine sediments.
    Liu W; Lu G; Wang WX
    Sci Total Environ; 2022 May; 820():153034. PubMed ID: 35065125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The competitive role of organic carbon and dissolved sulfide in controlling the distribution of mercury in freshwater lake sediments.
    Belzile N; Lang CY; Chen YW; Wang M
    Sci Total Environ; 2008 Nov; 405(1-3):226-38. PubMed ID: 18657305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal cycling during sediment early diagenesis in a water reservoir affected by acid mine drainage.
    Torres E; Ayora C; Canovas CR; García-Robledo E; Galván L; Sarmiento AM
    Sci Total Environ; 2013 Sep; 461-462():416-29. PubMed ID: 23747557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic and mercury contamination and complex aquatic bioindicator responses to historical gold mining and modern watershed stressors in urban Nova Scotia, Canada.
    Clark AJ; Labaj AL; Smol JP; Campbell LM; Kurek J
    Sci Total Environ; 2021 Sep; 787():147374. PubMed ID: 34045077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.