These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35222960)

  • 21. Individual birds advance offspring hatching in response to increased temperature after the start of laying.
    Vedder O
    Oecologia; 2012 Nov; 170(3):619-28. PubMed ID: 22569557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of ambient temperatures on evolutionary potential of reproductive timing in boreal passerines.
    Vatka E; Orell M; Rytkönen S; Merilä J
    J Anim Ecol; 2021 Feb; 90(2):367-375. PubMed ID: 33090475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complex interactions among temporal variables affect the plasticity of clutch size in a multi-brooded bird.
    Westneat DF; Stewart IR; Hatch MI
    Ecology; 2009 May; 90(5):1162-74. PubMed ID: 19537538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spring vegetation phenology is a robust predictor of breeding date across broad landscapes: a multi-site approach using the Corsican blue tit (Cyanistes caeruleus).
    Bourgault P; Thomas D; Perret P; Blondel J
    Oecologia; 2010 Apr; 162(4):885-92. PubMed ID: 20035434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. It takes two: Heritable male effects on reproductive timing but not clutch size in a wild bird population.
    Evans SR; Postma E; Sheldon BC
    Evolution; 2020 Oct; 74(10):2320-2331. PubMed ID: 32309877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenotypic plasticity in response to climate change: the importance of cue variation.
    Bonamour S; Chevin LM; Charmantier A; Teplitsky C
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180178. PubMed ID: 30966957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contrasting patterns of phenotypic plasticity in reproductive traits in two great tit (Parus major) populations.
    Husby A; Nussey DH; Visser ME; Wilson AJ; Sheldon BC; Kruuk LE
    Evolution; 2010 Aug; 64(8):2221-37. PubMed ID: 20298465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations?
    Both C; van Asch M; Bijlsma RG; van den Burg AB; Visser ME
    J Anim Ecol; 2009 Jan; 78(1):73-83. PubMed ID: 18771506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluctuating selection driven by global and local climatic conditions leads to stasis in breeding time in a migratory bird.
    Le Vaillant J; Potti J; Camacho C; Canal D; Martínez-Padilla J
    J Evol Biol; 2021 Oct; 34(10):1541-1553. PubMed ID: 34415649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selection on laying date is connected to breeding density in the pied flycatcher.
    Ahola MP; Laaksonen T; Eeva T; Lehikoinen E
    Oecologia; 2012 Mar; 168(3):703-10. PubMed ID: 21987266
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antagonistic Effects of Assortative Mating on the Evolution of Phenotypic Plasticity along Environmental Gradients.
    Soularue JP; Firmat C; Caignard T; Thöni A; Arnoux L; Delzon S; Ronce O; Kremer A
    Am Nat; 2023 Jul; 202(1):18-39. PubMed ID: 37384769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting bird phenology from space: satellite-derived vegetation green-up signal uncovers spatial variation in phenological synchrony between birds and their environment.
    Cole EF; Long PR; Zelazowski P; Szulkin M; Sheldon BC
    Ecol Evol; 2015 Nov; 5(21):5057-74. PubMed ID: 26640682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incubation behavior adjustments, driven by ambient temperature variation, improve synchrony between hatch dates and caterpillar peak in a wild bird population.
    Simmonds EG; Sheldon BC; Coulson T; Cole EF
    Ecol Evol; 2017 Nov; 7(22):9415-9425. PubMed ID: 29187978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasticity in female timing may explain earlier breeding in a North American songbird.
    Kimmitt AA; Becker DJ; Diller SN; Gerlach NM; Rosvall KA; Ketterson ED
    J Anim Ecol; 2022 Oct; 91(10):1988-1998. PubMed ID: 35819093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in breeding phenology and population size of birds.
    Dunn PO; Møller AP
    J Anim Ecol; 2014 May; 83(3):729-39. PubMed ID: 24117440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tits on the move: exploring the impact of environmental change on blue tit and great tit migration distance.
    Smallegange IM; Fiedler W; Köppen U; Geiter O; Bairlein F
    J Anim Ecol; 2010 Mar; 79(2):350-7. PubMed ID: 20002861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenological mismatch drives selection on elevation, but not on slope, of breeding time plasticity in a wild songbird.
    Ramakers JJC; Gienapp P; Visser ME
    Evolution; 2019 Feb; 73(2):175-187. PubMed ID: 30556587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal changes in reproductive success and optimal breeding decisions in a long-distance migratory bird.
    Reséndiz-Infante C; Gauthier G
    Sci Rep; 2020 Dec; 10(1):22067. PubMed ID: 33328508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The shifting phenological landscape: Within- and between-species variation in leaf emergence in a mixed-deciduous woodland.
    Cole EF; Sheldon BC
    Ecol Evol; 2017 Feb; 7(4):1135-1147. PubMed ID: 28303184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Best environmental predictors of breeding phenology differ with elevation in a common woodland bird species.
    Bison M; Yoccoz NG; Carlson B; Klein G; Laigle I; Van Reeth C; Asse D; Delestrade A
    Ecol Evol; 2020 Sep; 10(18):10219-10229. PubMed ID: 33005377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.