These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35222966)

  • 1. Copepod reproductive effort and oxidative status as responses to warming in the marine environment.
    von Weissenberg E; Jansson A; Vuori KA; Engström-Öst J
    Ecol Evol; 2022 Feb; 12(2):e8594. PubMed ID: 35222966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Projected marine climate change: effects on copepod oxidative status and reproduction.
    Vehmaa A; Hogfors H; Gorokhova E; Brutemark A; Holmborn T; Engström-Öst J
    Ecol Evol; 2013 Nov; 3(13):4548-57. PubMed ID: 24340194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bloom-forming cyanobacteria support copepod reproduction and development in the Baltic Sea.
    Hogfors H; Motwani NH; Hajdu S; El-Shehawy R; Holmborn T; Vehmaa A; Engström-Öst J; Brutemark A; Gorokhova E
    PLoS One; 2014; 9(11):e112692. PubMed ID: 25409500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes.
    Vehmaa A; Brutemark A; Engström-Öst J
    PLoS One; 2012; 7(10):e48538. PubMed ID: 23119052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress and antioxidant defense responses in Acartia copepods in relation to environmental factors.
    Glippa O; Engström-Öst J; Kanerva M; Rein A; Vuori K
    PLoS One; 2018; 13(4):e0195981. PubMed ID: 29652897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproductive trade-offs of the estuarine copepod Eurytemora affinis under different thermal and haline regimes.
    Souissi A; Hwang JS; Souissi S
    Sci Rep; 2021 Oct; 11(1):20139. PubMed ID: 34635769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of marine copepods to a changing tropical environment: winners, losers and implications.
    Chew LL; Chong VC
    PeerJ; 2016; 4():e2052. PubMed ID: 27257540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.
    Garzke J; Ismar SMH; Sommer U
    Oecologia; 2015 Mar; 177(3):849-860. PubMed ID: 25413864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant Responses in Copepods Are Driven Primarily by Food Intake, Not by Toxin-Producing Cyanobacteria in the Diet.
    Gorokhova E; El-Shehawy R
    Front Physiol; 2021; 12():805646. PubMed ID: 35058807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Reproductive Capacities of the Calanoid Copepods
    Behbehani M; Uddin S; Habibi N; Al-Sarawi HA; Al-Enezi Y
    Animals (Basel); 2023 Jun; 13(13):. PubMed ID: 37443958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of UV radiation on hatching, lipid peroxidation, and fatty acid composition in the copepod Paracyclopina nana.
    Won EJ; Lee Y; Han J; Hwang UK; Shin KH; Park HG; Lee JS
    Comp Biochem Physiol C Toxicol Pharmacol; 2014 Sep; 165():60-6. PubMed ID: 24952335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shifts in survival and reproduction after chronic warming enhance the potential of a marine copepod to persist under extreme heat events.
    de Juan C; Calbet A; Saiz E
    J Plankton Res; 2023; 45(5):751-762. PubMed ID: 37779672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bet hedging in a warming ocean: predictability of maternal environment shapes offspring size variation in marine sticklebacks.
    Shama LN
    Glob Chang Biol; 2015 Dec; 21(12):4387-400. PubMed ID: 26183221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental temperature, more than long-term evolution, defines thermal tolerance in an estuarine copepod.
    Ashlock L; Darwin C; Crooker J; deMayo J; Dam HG; Pespeni M
    Ecol Evol; 2024 Feb; 14(2):e10995. PubMed ID: 38380068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extreme temperature impairs growth and productivity in a common tropical marine copepod.
    Doan NX; Vu MTT; Pham HQ; Wisz MS; Nielsen TG; Dinh KV
    Sci Rep; 2019 Mar; 9(1):4550. PubMed ID: 30872725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can ocean warming alter sub-lethal effects of antiepileptic and antihistaminic pharmaceuticals in marine bivalves?
    Almeida Â; Calisto V; Esteves VI; Schneider RJ; Figueira E; Soares AMVM; Freitas R
    Aquat Toxicol; 2021 Jan; 230():105673. PubMed ID: 33221665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warmer temperature increases mercury toxicity in a marine copepod.
    Bai Z; Wang M
    Ecotoxicol Environ Saf; 2020 Sep; 201():110861. PubMed ID: 32544748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of the toxic dinoflagellate Alexandrium on feeding, reproduction and mortality of the copepod Acartia: A systematic review employing weighted linear models.
    Felpeto AB; Rivera MF; Vasconcelos VM
    Harmful Algae; 2024 Aug; 137():102659. PubMed ID: 39003023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eco-physiological responses of copepods and pteropods to ocean warming and acidification.
    Engström-Öst J; Glippa O; Feely RA; Kanerva M; Keister JE; Alin SR; Carter BR; McLaskey AK; Vuori KA; Bednaršek N
    Sci Rep; 2019 Mar; 9(1):4748. PubMed ID: 30894601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher temperature induces oxidative stress in hybrids but not in parental species: A case study of crested newts.
    Petrović TG; Vučić T; Burraco P; Gavrilović BR; Despotović SG; Gavrić JP; Radovanović TB; Šajkunić S; Ivanović A; Prokić MD
    J Therm Biol; 2023 Feb; 112():103474. PubMed ID: 36796919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.