These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35223048)

  • 41. A comparison of scavenging abilities of antioxidants against hydroxyl radicals.
    Ueda J; Saito N; Shimazu Y; Ozawa T
    Arch Biochem Biophys; 1996 Sep; 333(2):377-84. PubMed ID: 8809076
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DFT study of the antiradical properties of some aromatic compounds derived from antioxidant essential oils: C-H bond vs. O-H bond.
    Boulebd H
    Free Radic Res; 2019 Dec; 53(11-12):1125-1134. PubMed ID: 31694416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental and theoretical evaluation on the antioxidant activity of a copper(ii) complex based on lidocaine and ibuprofen amide-phenanthroline agents.
    Tabrizi L; Dao DQ; Vu TA
    RSC Adv; 2019 Jan; 9(6):3320-3335. PubMed ID: 35518981
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: a physicochemical analysis.
    Galano A; Medina ME; Tan DX; Reiter RJ
    J Pineal Res; 2015 Jan; 58(1):107-16. PubMed ID: 25424557
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selected anthraquinones as potential free radical scavengers and P-glycoprotein inhibitors.
    Jeremić S; Amić A; Stanojević-Pirković M; Marković Z
    Org Biomol Chem; 2018 Mar; 16(11):1890-1902. PubMed ID: 29479603
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [A modern concept of antihypoxic and antioxidant effects of mexidol].
    Shchulkin AV
    Zh Nevrol Psikhiatr Im S S Korsakova; 2018; 118(12. Vyp. 2):87-93. PubMed ID: 30830123
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antiradical capacity of ommochromes.
    Romero Y; Martínez A
    J Mol Model; 2015 Aug; 21(8):220. PubMed ID: 26238086
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antioxidant Activities of Monosubstituted Indolinonic Hydroxylamines: A Thermodynamic and Kinetic Study.
    Vo QV; Van Gon T; Van Bay M; Mechler A
    J Phys Chem B; 2019 Dec; 123(50):10672-10679. PubMed ID: 31760751
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A theoretical study of the radical scavenging activity of natural stilbenes.
    Vo QV; Cam Nam P; Bay MV; Minh Thong N; Hieu LT; Mechler A
    RSC Adv; 2019 Dec; 9(72):42020-42028. PubMed ID: 35542856
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A thermodynamic and kinetic study of the antioxidant activity of natural hydroanthraquinones.
    Vo QV; Thong NM; Le Huyen T; Nam PC; Tam NM; Hoa NT; Mechler A
    RSC Adv; 2020 May; 10(34):20089-20097. PubMed ID: 35520421
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the free radical scavenging and metallic ion chelating activities of pyridoxal - Could the pro-oxidant risk be competitive?
    Ngo TC; Truong DH; Nguyen TTN; Quang DT; Dao DQ
    Phytochemistry; 2022 Jul; 199():113176. PubMed ID: 35390394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Free radical scavenging and copper chelation: a potentially beneficial action of captopril.
    Tamba M; Torreggiani A
    Free Radic Res; 2000 Mar; 32(3):199-211. PubMed ID: 10730819
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct ab initio MD study on the electron capture dynamics of hydroperoxy radical (HOO)-water complexes.
    Tachikawa H
    J Phys Chem A; 2010 Apr; 114(14):4951-6. PubMed ID: 20302311
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intrinsic Antioxidant Potential of the Aminoindole Structure: A Computational Kinetics Study of Tryptamine.
    Bentz EN; Lobayan RM; Martínez H; Redondo P; Largo A
    J Phys Chem B; 2018 Jun; 122(24):6386-6395. PubMed ID: 29775059
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ligand-based design of chalcone analogues and thermodynamic analysis of their mechanism of free radical scavenge.
    Alisi IO; Uzairu A; Idris SO
    J Mol Model; 2021 Feb; 27(3):95. PubMed ID: 33638715
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neuroprotective Effects and Mechanisms of Curcumin-Cu(II) and -Zn(II) Complexes Systems and Their Pharmacological Implications.
    Yan FS; Sun JL; Xie WH; Shen L; Ji HF
    Nutrients; 2017 Dec; 10(1):. PubMed ID: 29283372
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In Silico Evaluation of the Radical Scavenging Mechanism of Mactanamide.
    Vo QV; Hoa NT; Nam PC; Quang DT; Mechler A
    ACS Omega; 2020 Sep; 5(37):24106-24110. PubMed ID: 32984732
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Capsaicin, a Powerful
    Pérez-González A; Prejanò M; Russo N; Marino T; Galano A
    Antioxidants (Basel); 2020 Dec; 9(12):. PubMed ID: 33302572
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Role of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) in the obtaining of stabilized magnetite nanoparticles for biomedical application].
    Vazhnichaya YM; Mokliak YV; Kurapov YA; Zabozlaev AA
    Biomed Khim; 2015; 61(3):384-8. PubMed ID: 26215417
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antiradical properties of curcumin, caffeic acid phenethyl ester, and chicoric acid: a DFT study.
    Manzanilla B; Robles J
    J Mol Model; 2022 Feb; 28(3):68. PubMed ID: 35218436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.