These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35224001)

  • 1. Primitive Action Based Combined Task and Motion Planning for the Service Robot.
    Jeon J; Jung HR; Yumbla F; Luong TA; Moon H
    Front Robot AI; 2022; 9():713470. PubMed ID: 35224001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A framework for neurosymbolic robot action planning using large language models.
    Capitanelli A; Mastrogiovanni F
    Front Neurorobot; 2024; 18():1342786. PubMed ID: 38895095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontology based autonomous robot task processing framework.
    Ge Y; Zhang S; Cai Y; Lu T; Wang H; Hui X; Wang S
    Front Neurorobot; 2024; 18():1401075. PubMed ID: 38774519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task-Oriented Robot Cognitive Manipulation Planning Using Affordance Segmentation and Logic Reasoning.
    Wang Z; Tian G
    IEEE Trans Neural Netw Learn Syst; 2023 Mar; PP():. PubMed ID: 37028380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PMK-A Knowledge Processing Framework for Autonomous Robotics Perception and Manipulation.
    Diab M; Akbari A; Ud Din M; Rosell J
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30866544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.
    Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L
    Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot Assistance in Dynamic Smart Environments-A Hierarchical Continual Planning in the Now Framework.
    Harman H; Chintamani K; Simoens P
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31703424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task Roadmaps: Speeding up Task Replanning.
    Lager A; Spampinato G; Papadopoulos AV; Nolte T
    Front Robot AI; 2022; 9():816355. PubMed ID: 35572375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface.
    Kyrarini M; Zheng Q; Haseeb MA; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing.
    Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guided Stochastic Optimization for Motion Planning.
    Magyar B; Tsiogkas N; Brito B; Patel M; Lane D; Wang S
    Front Robot AI; 2019; 6():105. PubMed ID: 33501120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive-rate Motion Planning for Concentric Tube Robots.
    Torres LG; Baykal C; Alterovitz R
    IEEE Int Conf Robot Autom; 2014 May; 2014():1915-1921. PubMed ID: 25436176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vision-Based Learning from Demonstration System for Robot Arms.
    Hwang PJ; Hsu CC; Chou PY; Wang WY; Lin CH
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Motion Planning Approach to Automatic Obstacle Avoidance during Concentric Tube Robot Teleoperation.
    Torres LG; Kuntz A; Gilbert HB; Swaney PJ; Hendrick RJ; Webster RJ; Alterovitz R
    IEEE Int Conf Robot Autom; 2015 May; 2015():2361-2367. PubMed ID: 26413381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Frequency Replanning Under Uncertainty Using Parallel Sampling-Based Motion Planning.
    Sun W; Patil S; Alterovitz R
    IEEE Trans Robot; 2015 Feb; 31(1):104-116. PubMed ID: 26279645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Task and Motion Planning and Execution for Multiagent Systems in Dynamic Environments.
    Faroni M; Umbrico A; Beschi M; Orlandini A; Cesta A; Pedrocchi N
    IEEE Trans Cybern; 2024 Jun; 54(6):3366-3377. PubMed ID: 37053056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning to reason over scene graphs: a case study of finetuning GPT-2 into a robot language model for grounded task planning.
    Chalvatzaki G; Younes A; Nandha D; Le AT; Ribeiro LFR; Gurevych I
    Front Robot AI; 2023; 10():1221739. PubMed ID: 37649810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning.
    Baykal C; Torres LG; Alterovitz R
    Rep U S; 2015 Sep; 2015():4381-4387. PubMed ID: 26951790
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.