BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35224661)

  • 1. Exposure to the mycotoxin deoxynivalenol reduces the transport of conjugated bile acids by intestinal Caco-2 cells.
    Wang J; Bakker W; Zheng W; de Haan L; Rietjens IMCM; Bouwmeester H
    Arch Toxicol; 2022 May; 96(5):1473-1482. PubMed ID: 35224661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribotoxin deoxynivalenol induces taurocholic acid malabsorption in an in vitro human intestinal model.
    Wang J; Sijs B; Bakker W; de Haan L; Bouwmeester H
    Toxicol Lett; 2023 Jul; 383():54-63. PubMed ID: 37315771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deoxynivalenol increases pro-inflammatory cytokine secretion and reduces primary bile acid transport in an inflamed intestinal in vitro co-culture model.
    Wang J; Bakker W; de Haan L; Bouwmeester H
    Food Res Int; 2023 Nov; 173(Pt 1):113323. PubMed ID: 37803634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intestinal in vitro transport assay combined with physiologically based kinetic modeling as a tool to predict bile acid levels in vivo.
    De Bruijn VMP; Te Kronnie W; Rietjens IMCM; Bouwmeester H
    ALTEX; 2024 Jan; 41(1):20-36. PubMed ID: 37528756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influences of cholecystectomy on the circadian rhythms of bile acids as well as the enterohepatic transporters and enzymes systems in mice.
    Zhang F; Duan Y; Xi L; Wei M; Shi A; Zhou Y; Wei Y; Wu X
    Chronobiol Int; 2018 May; 35(5):673-690. PubMed ID: 29381405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatory effects of cereulide and deoxynivalenol on in vitro cell viability and inflammation of human Caco-2 cells.
    Beisl J; Pahlke G; Abeln H; Ehling-Schulz M; Del Favero G; Varga E; Warth B; Sulyok M; Abia W; Ezekiel CN; Marko D
    Arch Toxicol; 2020 Mar; 94(3):833-844. PubMed ID: 32065293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of dietary pectin on the profile and transport of intestinal bile acids in young pigs.
    Fang W; Zhang L; Meng Q; Wu W; Lee YK; Xie J; Zhang H
    J Anim Sci; 2018 Nov; 96(11):4743-4754. PubMed ID: 30102377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice.
    Fu ZD; Klaassen CD
    Toxicol Appl Pharmacol; 2013 Dec; 273(3):680-90. PubMed ID: 24183703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition.
    Vaquero J; Monte MJ; Dominguez M; Muntané J; Marin JJ
    Biochem Pharmacol; 2013 Oct; 86(7):926-39. PubMed ID: 23928191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic Solute Transporter α-β Protects Ileal Enterocytes From Bile Acid-Induced Injury.
    Ferrebee CB; Li J; Haywood J; Pachura K; Robinson BS; Hinrichs BH; Jones RM; Rao A; Dawson PA
    Cell Mol Gastroenterol Hepatol; 2018; 5(4):499-522. PubMed ID: 29930976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bile acid transporters: structure, function, regulation and pathophysiological implications.
    Alrefai WA; Gill RK
    Pharm Res; 2007 Oct; 24(10):1803-23. PubMed ID: 17404808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative potency of obeticholic acid and natural bile acids on FXR in hepatic and intestinal in vitro cell models.
    Zhang Y; LaCerte C; Kansra S; Jackson JP; Brouwer KR; Edwards JE
    Pharmacol Res Perspect; 2017 Dec; 5(6):. PubMed ID: 29226620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The lipid flippase heterodimer ATP8B1-CDC50A is essential for surface expression of the apical sodium-dependent bile acid transporter (SLC10A2/ASBT) in intestinal Caco-2 cells.
    van der Mark VA; de Waart DR; Ho-Mok KS; Tabbers MM; Voogt HW; Oude Elferink RP; Knisely AS; Paulusma CC
    Biochim Biophys Acta; 2014 Dec; 1842(12 Pt A):2378-86. PubMed ID: 25239307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Oral Absorption and Liver Distribution of Polymeric Nanoparticles through Traveling the Enterohepatic Circulation Pathways of Bile Acid.
    Wang L; Liu Q; Hu X; Zhou C; Ma Y; Wang X; Tang Y; Chen K; Wang X; Liu Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):41712-41725. PubMed ID: 36069201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations.
    Sergent T; Parys M; Garsou S; Pussemier L; Schneider YJ; Larondelle Y
    Toxicol Lett; 2006 Jul; 164(2):167-76. PubMed ID: 16442754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential and organ-specific functions of organic solute transporter α and β in experimental cholestasis.
    van de Wiel SMW; Porteiro B; Belt SC; Vogels EWM; Bolt I; Vermeulen JLM; de Waart DR; Verheij J; Muncan V; Oude Elferink RPJ; van de Graaf SFJ
    JHEP Rep; 2022 May; 4(5):100463. PubMed ID: 35462858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the intestinal bile acid transporters in bile acid and drug disposition.
    Dawson PA
    Handb Exp Pharmacol; 2011; (201):169-203. PubMed ID: 21103970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo effects of a mycotoxin, deoxynivalenol, and a trace metal, cadmium, alone or in a mixture on the intestinal barrier.
    Luo S; Terciolo C; Bracarense APFL; Payros D; Pinton P; Oswald IP
    Environ Int; 2019 Nov; 132():105082. PubMed ID: 31400600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Organic Solute Transporter Alpha/Beta in Hepatotoxic Bile Acid Transport and Drug Interactions.
    Beaudoin JJ; Bezençon J; Sjöstedt N; Fallon JK; Brouwer KLR
    Toxicol Sci; 2020 Jul; 176(1):34-35. PubMed ID: 32294204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol dependent downregulation of mouse and human apical sodium dependent bile acid transporter (ASBT) gene expression: molecular mechanism and physiological consequences.
    Thomas C; Landrier JF; Gaillard D; Grober J; Monnot MC; Athias A; Besnard P
    Gut; 2006 Sep; 55(9):1321-31. PubMed ID: 16484503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.