These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35224733)

  • 1. Neural correlates of unpredictable Stop and non-Stop cues in overt and imagined execution.
    González-Villar A; Galdo-Álvarez S; Carrillo-de-la-Peña MT
    Psychophysiology; 2022 Jul; 59(7):e14019. PubMed ID: 35224733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When the brain simulates stopping: Neural activity recorded during real and imagined stop-signal tasks.
    González-Villar AJ; Bonilla FM; Carrillo-de-la-Peña MT
    Cogn Affect Behav Neurosci; 2016 Oct; 16(5):825-35. PubMed ID: 27160368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common and Unique Inhibitory Control Signatures of Action-Stopping and Attentional Capture Suggest That Actions Are Stopped in Two Stages.
    Tatz JR; Soh C; Wessel JR
    J Neurosci; 2021 Oct; 41(42):8826-8838. PubMed ID: 34493541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common neural processes during action-stopping and infrequent stimulus detection: The frontocentral P3 as an index of generic motor inhibition.
    Waller DA; Hazeltine E; Wessel JR
    Int J Psychophysiol; 2021 May; 163():11-21. PubMed ID: 30659867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repetition priming in the stop signal task: the electrophysiology of sequential effects of stopping.
    Oldenburg JFE; Roger C; Assecondi S; Verbruggen F; Fias W
    Neuropsychologia; 2012 Oct; 50(12):2860-2868. PubMed ID: 22940427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveling the Field for a Fairer Race between Going and Stopping: Neural Evidence for the Race Model of Motor Inhibition from a New Version of the Stop Signal Task.
    Dykstra T; Waller DA; Hazeltine E; Wessel JR
    J Cogn Neurosci; 2020 Apr; 32(4):590-602. PubMed ID: 31742470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of stop-signal probability in the stop-signal paradigm: the N2/P3 complex further validated.
    Ramautar JR; Kok A; Ridderinkhof KR
    Brain Cogn; 2004 Nov; 56(2):234-52. PubMed ID: 15518938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of stop-signal and Go/Nogo response inhibition in children aged 7-12 years: performance and event-related potential indices.
    Johnstone SJ; Dimoska A; Smith JL; Barry RJ; Pleffer CB; Chiswick D; Clarke AR
    Int J Psychophysiol; 2007 Jan; 63(1):25-38. PubMed ID: 16919346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proactive cues facilitate faster action reprogramming, but not stopping, in a response-selective stop signal task.
    Salomoni SE; Gronau QF; Heathcote A; Matzke D; Hinder MR
    Sci Rep; 2023 Nov; 13(1):19564. PubMed ID: 37949974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory motor control based on complex stopping goals relies on the same brain network as simple stopping.
    Wessel JR; Aron AR
    Neuroimage; 2014 Dec; 103():225-234. PubMed ID: 25270603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proactive Control Strategies for Overt and Covert Go/NoGo Tasks: An Electrical Neuroimaging Study.
    Angelini M; Calbi M; Ferrari A; Sbriscia-Fioretti B; Franca M; Gallese V; Umiltà MA
    PLoS One; 2016; 11(3):e0152188. PubMed ID: 27010832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stop-signal delay reflects response selection duration in stop-signal task.
    Aksiotis V; Myachykov A; Tumyalis A
    Atten Percept Psychophys; 2023 Aug; 85(6):1976-1989. PubMed ID: 37415061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movement-related potentials in the Go/NoGo task: the P3 reflects both cognitive and motor inhibition.
    Smith JL; Johnstone SJ; Barry RJ
    Clin Neurophysiol; 2008 Mar; 119(3):704-714. PubMed ID: 18164657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perceptual Surprise Improves Action Stopping by Nonselectively Suppressing Motor Activity via a Neural Mechanism for Motor Inhibition.
    Dutra IC; Waller DA; Wessel JR
    J Neurosci; 2018 Feb; 38(6):1482-1492. PubMed ID: 29305533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Equivalence of Imagined vs. Real Performance of an Inhibitory Task: An EEG/ERP Study.
    Galdo-Alvarez S; Bonilla FM; González-Villar AJ; Carrillo-de-la-Peña MT
    Front Hum Neurosci; 2016; 10():467. PubMed ID: 27695410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frontal-midline theta reflects different mechanisms associated with proactive and reactive control of inhibition.
    Messel MS; Raud L; Hoff PK; Stubberud J; Huster RJ
    Neuroimage; 2021 Nov; 241():118400. PubMed ID: 34311382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paired-pulse TMS and scalp EEG reveal systematic relationship between inhibitory GABA
    Hynd M; Soh C; Rangel BO; Wessel JR
    J Neurophysiol; 2021 Feb; 125(2):648-660. PubMed ID: 33439759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal neural functions associated with motor inhibition deficits in schizophrenia and bipolar disorder.
    Van Voorhis AC; Kent JS; Kang SS; Goghari VM; MacDonald AW; Sponheim SR
    Hum Brain Mapp; 2019 Dec; 40(18):5397-5411. PubMed ID: 31471938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural processes of preparatory control for stop signal inhibition.
    Hu S; Li CS
    Hum Brain Mapp; 2012 Dec; 33(12):2785-96. PubMed ID: 21976392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.