BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 35224830)

  • 1. Fermentative Production of Halogenated Tryptophan Derivatives with Corynebacterium glutamicum Overexpressing Tryptophanase or Decarboxylase Genes.
    Kerbs A; Burgardt A; Veldmann KH; Schäffer T; Lee JH; Wendisch VF
    Chembiochem; 2022 May; 23(9):e202200007. PubMed ID: 35224830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo tryptophanase-based indole production by metabolically engineered Corynebacterium glutamicum.
    Mindt M; Ferrer L; Bosch D; Cankar K; Wendisch VF
    Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1621-1634. PubMed ID: 36786915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of indole by Corynebacterium glutamicum microbial cell factories for flavor and fragrance applications.
    Mindt M; Beyraghdar Kashkooli A; Suarez-Diez M; Ferrer L; Jilg T; Bosch D; Martins Dos Santos V; Wendisch VF; Cankar K
    Microb Cell Fact; 2022 Mar; 21(1):45. PubMed ID: 35331232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan.
    Veldmann KH; Minges H; Sewald N; Lee JH; Wendisch VF
    J Biotechnol; 2019 Feb; 291():7-16. PubMed ID: 30579891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Corynebacterium glutamicum for violacein hyper production.
    Sun H; Zhao D; Xiong B; Zhang C; Bi C
    Microb Cell Fact; 2016 Aug; 15(1):148. PubMed ID: 27557730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentative aminopyrrolnitrin production by metabolically engineered Corynebacterium glutamicum.
    Putri VRM; Jung MH; Lee JY; Kwak MH; Mariyes TC; Kerbs A; Wendisch VF; Kong HJ; Kim YO; Lee JH
    Microb Cell Fact; 2024 May; 23(1):147. PubMed ID: 38783320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. l-Serine Biosensor-Controlled Fermentative Production of l-Tryptophan Derivatives by
    Ferrer L; Elsaraf M; Mindt M; Wendisch VF
    Biology (Basel); 2022 May; 11(5):. PubMed ID: 35625472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved fermentative γ-aminobutyric acid production by secretory expression of glutamate decarboxylase by Corynebacterium glutamicum.
    Wen J; Bao J
    J Biotechnol; 2021 Apr; 331():19-25. PubMed ID: 33711360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Advances in fermentative production of L-tryptophan: a review].
    Shen G; Liu Y; Ji N; Zhang Y; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2024 Mar; 40(3):621-643. PubMed ID: 38545968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bromination of L-tryptophan in a Fermentative Process With
    Veldmann KH; Dachwitz S; Risse JM; Lee JH; Sewald N; Wendisch VF
    Front Bioeng Biotechnol; 2019; 7():219. PubMed ID: 31620432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli.
    Okai N; Miyoshi T; Takeshima Y; Kuwahara H; Ogino C; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):135-45. PubMed ID: 26392137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of aromatic L-amino acid decarboxylase in bacillamide C biosynthesis by Bacillus atrophaeus C89.
    Yuwen L; Zhang FL; Chen QH; Lin SJ; Zhao YL; Li ZY
    Sci Rep; 2013; 3():1753. PubMed ID: 23628927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Saccharomyces cerevisiae for the de novo Production of Halogenated Tryptophan and Tryptamine Derivatives.
    Milne N; Sáez-Sáez J; Nielsen AM; Dyekjaer JD; Rago D; Kristensen M; Wulff T; Borodina I
    ChemistryOpen; 2023 Apr; 12(4):e202200266. PubMed ID: 36929157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system.
    Schneider J; Eberhardt D; Wendisch VF
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):169-78. PubMed ID: 22370950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophanase-tryptophan synthetase systems in Escherichia coli. I. Effect of tryptophan and related compounds.
    FREUNDLICH M; LICHSTEIN HC
    J Bacteriol; 1962 Nov; 84(5):979-87. PubMed ID: 13959621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical characterization and synthetic application of aromatic L-amino acid decarboxylase from Bacillus atrophaeus.
    Choi Y; Han SW; Kim JS; Jang Y; Shin JS
    Appl Microbiol Biotechnol; 2021 Apr; 105(7):2775-2785. PubMed ID: 33713143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum.
    Zhang C; Zhang J; Kang Z; Du G; Chen J
    J Ind Microbiol Biotechnol; 2015 May; 42(5):787-97. PubMed ID: 25665502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cpf1-Assisted Engineering of Corynebacterium glutamicum SNK118 for Enhanced L-Ornithine Production by NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase and NADH-Dependent Glutamate Dehydrogenase.
    Dong J; Kan B; Liu H; Zhan M; Wang S; Xu G; Han R; Ni Y
    Appl Biochem Biotechnol; 2020 Jul; 191(3):955-967. PubMed ID: 31950445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Escherichia coli for the production of indirubin from glucose.
    Du J; Yang D; Luo ZW; Lee SY
    J Biotechnol; 2018 Feb; 267():19-28. PubMed ID: 29301095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.