These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35225268)

  • 21. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for -1 ribosomal frameshifting stimulation.
    Zhong Z; Yang L; Zhang H; Shi J; Vandana JJ; Lam DT; Olsthoorn RC; Lu L; Chen G
    Sci Rep; 2016 Dec; 6():39549. PubMed ID: 28000744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Programmed -1 ribosomal frameshifting from the perspective of the conformational dynamics of mRNA and ribosomes.
    Chang KC; Wen JD
    Comput Struct Biotechnol J; 2021; 19():3580-3588. PubMed ID: 34257837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Precision Single-Molecule Characterization of the Folding of an HIV RNA Hairpin by Atomic Force Microscopy.
    Walder R; Van Patten WJ; Ritchie DB; Montange RK; Miller TW; Woodside MT; Perkins TT
    Nano Lett; 2018 Oct; 18(10):6318-6325. PubMed ID: 30234311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of HIV-1 Gag-Pol Expression by Shiftless, an Inhibitor of Programmed -1 Ribosomal Frameshifting.
    Wang X; Xuan Y; Han Y; Ding X; Ye K; Yang F; Gao P; Goff SP; Gao G
    Cell; 2019 Jan; 176(3):625-635.e14. PubMed ID: 30682371
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel role for poly(C) binding proteins in programmed ribosomal frameshifting.
    Napthine S; Treffers EE; Bell S; Goodfellow I; Fang Y; Firth AE; Snijder EJ; Brierley I
    Nucleic Acids Res; 2016 Jul; 44(12):5491-503. PubMed ID: 27257056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA pseudoknots and the regulation of protein synthesis.
    Brierley I; Gilbert RJ; Pennell S
    Biochem Soc Trans; 2008 Aug; 36(Pt 4):684-9. PubMed ID: 18631140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulators of Viral Frameshifting: More Than RNA Influences Translation Events.
    Penn WD; Harrington HR; Schlebach JP; Mukhopadhyay S
    Annu Rev Virol; 2020 Sep; 7(1):219-238. PubMed ID: 32600156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. -1 Programmed Ribosomal Frameshifting as a Force-Dependent Process.
    Visscher K
    Prog Mol Biol Transl Sci; 2016; 139():45-72. PubMed ID: 26970190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting.
    Sun Y; Abriola L; Niederer RO; Pedersen SF; Alfajaro MM; Silva Monteiro V; Wilen CB; Ho YC; Gilbert WV; Surovtseva YV; Lindenbach BD; Guo JU
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34185680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ribosome collisions alter frameshifting at translational reprogramming motifs in bacterial mRNAs.
    Smith AM; Costello MS; Kettring AH; Wingo RJ; Moore SD
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21769-21779. PubMed ID: 31591196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure-altering mutations of the SARS-CoV-2 frameshifting RNA element.
    Schlick T; Zhu Q; Jain S; Yan S
    Biophys J; 2021 Mar; 120(6):1040-1053. PubMed ID: 33096082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of mRNA frame maintenance and its subversion during translation of the genetic code.
    Dunkle JA; Dunham CM
    Biochimie; 2015 Jul; 114():90-6. PubMed ID: 25708857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Following translation by single ribosomes one codon at a time.
    Wen JD; Lancaster L; Hodges C; Zeri AC; Yoshimura SH; Noller HF; Bustamante C; Tinoco I
    Nature; 2008 Apr; 452(7187):598-603. PubMed ID: 18327250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Structurally Conserved RNA Element within SARS-CoV-2 ORF1a RNA and S mRNA Regulates Translation in Response to Viral S Protein-Induced Signaling in Human Lung Cells.
    Basu A; Penumutchu S; Nguyen K; Mbonye U; Tolbert BS; Karn J; Komar AA; Mazumder B
    J Virol; 2022 Jan; 96(2):e0167821. PubMed ID: 34757848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined single molecule experimental and computational approaches for understanding the unfolding pathway of a viral translation enhancer that participates in a conformational switch.
    Le MT; Kasprzak WK; Shapiro BA; Simon AE
    RNA Biol; 2017 Nov; 14(11):1466-1472. PubMed ID: 28548627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting.
    Namy O; Moran SJ; Stuart DI; Gilbert RJ; Brierley I
    Nature; 2006 May; 441(7090):244-7. PubMed ID: 16688178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ribosomal frameshifting during translation of measles virus P protein mRNA is capable of directing synthesis of a unique protein.
    Liston P; Briedis DJ
    J Virol; 1995 Nov; 69(11):6742-50. PubMed ID: 7474085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA reactions one molecule at a time.
    Tinoco I; Chen G; Qu X
    Cold Spring Harb Perspect Biol; 2010 Nov; 2(11):a003624. PubMed ID: 20739416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. tmRNA and associated ligands: a puzzling relationship.
    Saguy M; Gillet R; Metzinger L; Felden B
    Biochimie; 2005; 87(9-10):897-903. PubMed ID: 16164997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.
    Irigoyen N; Firth AE; Jones JD; Chung BY; Siddell SG; Brierley I
    PLoS Pathog; 2016 Feb; 12(2):e1005473. PubMed ID: 26919232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.