BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 35225340)

  • 1. Modeling Parkinson's disease in LRRK2 mice: focus on synaptic dysfunction and the autophagy-lysosomal pathway.
    Albanese F; Domenicale C; Volta M; Morari M
    Biochem Soc Trans; 2022 Feb; 50(1):621-632. PubMed ID: 35225340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parkinson's Disease-Associated LRRK2 Hyperactive Kinase Mutant Disrupts Synaptic Vesicle Trafficking in Ventral Midbrain Neurons.
    Pan PY; Li X; Wang J; Powell J; Wang Q; Zhang Y; Chen Z; Wicinski B; Hof P; Ryan TA; Yue Z
    J Neurosci; 2017 Nov; 37(47):11366-11376. PubMed ID: 29054882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopaminergic neurodegeneration induced by Parkinson's disease-linked G2019S LRRK2 is dependent on kinase and GTPase activity.
    Nguyen APT; Tsika E; Kelly K; Levine N; Chen X; West AB; Boularand S; Barneoud P; Moore DJ
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17296-17307. PubMed ID: 32631998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive silencing of LRRK2 kinase activity leads to early glucocerebrosidase deregulation and late impairment of autophagy in vivo.
    Albanese F; Mercatelli D; Finetti L; Lamonaca G; Pizzi S; Shimshek DR; Bernacchia G; Morari M
    Neurobiol Dis; 2021 Nov; 159():105487. PubMed ID: 34419621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Parkinson's disease in LRRK2 rodents.
    Domenicale C; Magnabosco S; Morari M
    Neuronal Signal; 2023 Sep; 7(3):NS20220040. PubMed ID: 37601008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LRRK2 interacts with the vacuolar-type H+-ATPase pump a1 subunit to regulate lysosomal function.
    Wallings R; Connor-Robson N; Wade-Martins R
    Hum Mol Genet; 2019 Aug; 28(16):2696-2710. PubMed ID: 31039583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons.
    Schapansky J; Khasnavis S; DeAndrade MP; Nardozzi JD; Falkson SR; Boyd JD; Sanderson JB; Bartels T; Melrose HL; LaVoie MJ
    Neurobiol Dis; 2018 Mar; 111():26-35. PubMed ID: 29246723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of macroautophagy related proteins in G2019S LRRK2 Parkinson's disease brains with Lewy body pathology.
    Mamais A; Manzoni C; Nazish I; Arber C; Sonustun B; Wray S; Warner TT; Cookson MR; Lewis PA; Bandopadhyay R
    Brain Res; 2018 Dec; 1701():75-84. PubMed ID: 30055128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LRRK2 and the Endolysosomal System in Parkinson's Disease.
    Erb ML; Moore DJ
    J Parkinsons Dis; 2020; 10(4):1271-1291. PubMed ID: 33044192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson's Disease.
    Nguyen M; Wong YC; Ysselstein D; Severino A; Krainc D
    Trends Neurosci; 2019 Feb; 42(2):140-149. PubMed ID: 30509690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upregulation of the p53-p21 pathway by G2019S LRRK2 contributes to the cellular senescence and accumulation of α-synuclein.
    Ho DH; Seol W; Son I
    Cell Cycle; 2019 Feb; 18(4):467-475. PubMed ID: 30712480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LRRK2 BAC transgenic rats develop progressive, L-DOPA-responsive motor impairment, and deficits in dopamine circuit function.
    Sloan M; Alegre-Abarrategui J; Potgieter D; Kaufmann AK; Exley R; Deltheil T; Threlfell S; Connor-Robson N; Brimblecombe K; Wallings R; Cioroch M; Bannerman DM; Bolam JP; Magill PJ; Cragg SJ; Dodson PD; Wade-Martins R
    Hum Mol Genet; 2016 Mar; 25(5):951-63. PubMed ID: 26744332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of LRRK2 and α-Synuclein in Parkinson's Disease.
    Daher JP
    Adv Neurobiol; 2017; 14():209-226. PubMed ID: 28353286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated transcriptomics and proteomics analysis reveals functional endocytic dysregulation caused by mutations in LRRK2.
    Connor-Robson N; Booth H; Martin JG; Gao B; Li K; Doig N; Vowles J; Browne C; Klinger L; Juhasz P; Klein C; Cowley SA; Bolam P; Hirst W; Wade-Martins R
    Neurobiol Dis; 2019 Jul; 127():512-526. PubMed ID: 30954703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal Firing and Glutamatergic Synapses in the Substantia Nigra Pars Reticulata of LRRK2-G2019S Mice.
    Sitzia G; Skiteva O; Chergui K
    Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36358985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LRRK2 and Proteostasis in Parkinson's Disease.
    Pérez-Carrión MD; Posadas I; Solera J; Ceña V
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Calcium Dysregulation Contributes to Dendrite Degeneration Mediated by PD/LBD-Associated LRRK2 Mutants.
    Verma M; Callio J; Otero PA; Sekler I; Wills ZP; Chu CT
    J Neurosci; 2017 Nov; 37(46):11151-11165. PubMed ID: 29038245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a physiologically relevant and easily scalable LUHMES cell-based model of G2019S LRRK2-driven Parkinson's disease.
    Calamini B; Geyer N; Huss-Braun N; Bernhardt A; Harsany V; Rival P; Cindhuchao M; Hoffmann D; Gratzer S
    Dis Model Mech; 2021 Jun; 14(6):. PubMed ID: 34114604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G2019S-LRRK2 Expression Augments α-Synuclein Sequestration into Inclusions in Neurons.
    Volpicelli-Daley LA; Abdelmotilib H; Liu Z; Stoyka L; Daher JP; Milnerwood AJ; Unni VK; Hirst WD; Yue Z; Zhao HT; Fraser K; Kennedy RE; West AB
    J Neurosci; 2016 Jul; 36(28):7415-27. PubMed ID: 27413152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LRRK2 along the Golgi and lysosome connection: a jamming situation.
    Piccoli G; Volta M
    Biochem Soc Trans; 2021 Nov; 49(5):2063-2072. PubMed ID: 34495322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.