BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3522576)

  • 1. Reaction of neutral endopeptidase 24.11 (enkephalinase) with arginine reagents.
    Jackson DG; Hersh LB
    J Biol Chem; 1986 Jul; 261(19):8649-54. PubMed ID: 3522576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pigeon liver malic enzyme: involvement of an arginyl residue at the binding site for malate and its analogs.
    Vernon CM; Hsu RY
    Arch Biochem Biophys; 1983 Aug; 225(1):296-305. PubMed ID: 6614923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R
    Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of L-lactate monooxygenase with 2,3-butanedione and phenylglyoxal.
    Peters RG; Jones WC; Cromartie TH
    Biochemistry; 1981 Apr; 20(9):2564-71. PubMed ID: 7236621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of carbonyl reductase from human brain by phenylglyoxal and 2,3-butanedione: a comparison with aldehyde reductase and aldose reductase.
    Bohren KM; von Wartburg JP; Wermuth B
    Biochim Biophys Acta; 1987 Nov; 916(2):185-92. PubMed ID: 3118957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae.
    Malebrán LP; Cardemil E
    Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical modification of arginine residues in the lactose repressor.
    Whitson PA; Matthews KS
    Biochemistry; 1987 Oct; 26(20):6502-7. PubMed ID: 3322382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arginyl and histidyl groups are essential for organic anion exchange in renal brush-border membrane vesicles.
    Sokol PP; Holohan PD; Ross CR
    J Biol Chem; 1988 May; 263(15):7118-23. PubMed ID: 3366770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of the phosphatidylcholine-transfer protein from bovine liver with butanedione and phenylglyoxal. Evidence for one essential arginine residue.
    Akeroyd R; Lange LG; Westerman J; Wirtz KW
    Eur J Biochem; 1981 Dec; 121(1):77-81. PubMed ID: 7327172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protection of hexaprenyl-diphosphate synthase of Micrococcus luteus B-P 26 against inactivation by sulphydryl reagents and arginine-specific reagents.
    Yoshida I; Koyama T; Ogura K
    Biochim Biophys Acta; 1989 Apr; 995(2):138-43. PubMed ID: 2539196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arginine-specific modification of rabbit muscle phosphoglucose isomerase: differences in the inactivation by phenylglyoxal and butanedione and in the protection by substrate analogs.
    Pullan LM; Igarashi P; Noltmann EA
    Arch Biochem Biophys; 1983 Mar; 221(2):489-98. PubMed ID: 6838203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of Escherichia coli L-threonine dehydrogenase by 2,3-butanedione. Evidence for a catalytically essential arginine residue.
    Epperly BR; Dekker EE
    J Biol Chem; 1989 Nov; 264(31):18296-301. PubMed ID: 2681195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.
    Adak S; Mazumder A; Banerjee RK
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of glutamate dehydrogenase and glutamate synthase from Bacillus megaterium by phenylglyoxal, butane-2,3-dione and pyridoxal 5'-phosphate.
    Hemmilä IA; Mäntsälä PI
    Biochem J; 1978 Jul; 173(1):53-8. PubMed ID: 28736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An essential arginine residue in porcine phospholipiase A2.
    Vensel LA; Kantrowitz ER
    J Biol Chem; 1980 Aug; 255(15):7306-10. PubMed ID: 7391083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UDP-glucose 4-epimerase from Saccharomyces fragilis. Presence of an essential arginine residue at the substrate-binding site of the enzyme.
    Mukherji S; Bhaduri A
    J Biol Chem; 1986 Apr; 261(10):4519-24. PubMed ID: 3957906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of an essential arginine residue in the plasma membrane H+-ATPase of Neurospora crassa.
    Kasher JS; Allen KE; Kasamo K; Slayman CW
    J Biol Chem; 1986 Aug; 261(23):10808-13. PubMed ID: 2874143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of essential arginine in bacterial peptidyl dipeptidase-4: arginine is not the anion binding site.
    Lanzillo JJ; Dasarathy Y; Fanburg BL
    Biochem Biophys Res Commun; 1989 Apr; 160(1):243-9. PubMed ID: 2653317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of D(--)-beta-hydroxybutyrate dehydrogenase by butanedione, phenylglyoxal, and diethyl pyrocarbonate.
    Phelps DC; Hatefi Y
    Biochemistry; 1981 Feb; 20(3):459-63. PubMed ID: 7213590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for an essential arginine residue at the active site of ATP citrate lyase from rat liver.
    Ramakrishna S; Benjamin WB
    Biochem J; 1981 Jun; 195(3):735-43. PubMed ID: 7316981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.