These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3522612)

  • 1. Pollen-stigma interactions in Brassica. IV. Structural reorganization in the pollen grains during hydration.
    Elleman CJ; Dickinson HG
    J Cell Sci; 1986 Feb; 80():141-57. PubMed ID: 3522612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of pollen components regulating pollination-specific responses in the stigmatic papillae of Brassica oleracea.
    Elleman CJ; Dickinson HG
    New Phytol; 1996 Jun; 133(2):197-205. PubMed ID: 29681065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the exine coating in pollen-stigma interactions in Brassica oleracea L.
    Elleman CJ; Dickinson HG
    New Phytol; 1990 Mar; 114(3):511-518. PubMed ID: 33873981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Determination of a position of a functional pore in the tobacco pollen].
    Mazina SE; Matveeva NP; Ermakov IP
    Tsitologiia; 2002; 44(1):33-9. PubMed ID: 11868459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pollen-stigma interaction in Brassica. III. Hydration of the pollen grains.
    Zuberi MI; Dickinson HG
    J Cell Sci; 1985 Jun; 76():321-36. PubMed ID: 4066794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of pollen hydration in Brassica requires continued protein synthesis, and glycosylation in necessary for intraspecific incompatibility.
    Sarker RH; Elleman CJ; Dickinson HG
    Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4340-4. PubMed ID: 16593944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into a hydration regulating system in Cupressus pollen grains.
    Danti R; Della Rocca G; Calamassi R; Mori B; Mariotti Lippi M
    Ann Bot; 2011 Aug; 108(2):299-306. PubMed ID: 21685430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and release of allergenic proteins in Parietaria judaica pollen grains.
    Vega-Maray AM; Fernández-González D; Valencia-Barrera R; Suárez-Cervera M
    Protoplasma; 2006 Aug; 228(1-3):115-20. PubMed ID: 16937063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aquaporin PIP genes are not expressed in the stigma papillae in Brassica oleracea.
    Marin-Olivier M; Chevalier T; Fobis-Loisy I; Dumas C; Gaude T
    Plant J; 2000 Oct; 24(2):231-40. PubMed ID: 11069697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunogold electron microscopic localization of the cross-reactive two-EF-hand calcium-binding birch pollen allergen Bet v 4 in dry and rehydrated birch pollen.
    Grote M; Hayek B; Reichelt R; Kraft D; Valenta R
    Int Arch Allergy Immunol; 1999 Dec; 120(4):287-94. PubMed ID: 10640912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bundles of hexagonally arranged tubules in timothy grass pollen: detection of a novel pollen component using anhydrous fixation and image analysis techniques in transmission electron microscopy.
    Grote M; Krzyzanek V; Reichelt R
    J Microsc; 2007 Oct; 228(Pt 1):34-9. PubMed ID: 17910695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pollination in species with dry stigmas: the nature of the early stigmatic response and the pathway taken by pollen tubes.
    Elleman CJ; Franklin-Tong V; Dickinson HG
    New Phytol; 1992 Jul; 121(3):413-424. PubMed ID: 33874153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pollen-stigma interactions in Brassica oleracea. I. Ultrastructure and physiology of the stigmatic papillar cells.
    Roberts IN; Harrod G; Dickinson HG
    J Cell Sci; 1984 Mar; 66():241-53. PubMed ID: 6746757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Techniques to preserve soluble surface components in birch pollen wall: a scanning and transmission electron microscopic study.
    Grote M
    J Histochem Cytochem; 1989 Jul; 37(7):981-7. PubMed ID: 2499622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural correlates of imbibitional injury in Typha pollen.
    Sack FD; Leopold AC; Hoekstra FA
    Am J Bot; 1988; 75(4):570-8. PubMed ID: 11537890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Following the Time-Course of Post-pollination Events by Transmission Electron Microscopy (TEM): Buildup of Exosome-Like Structures with Compatible Pollinations.
    Safavian D; Doucet J; Goring DR
    Methods Mol Biol; 2016; 1459():91-101. PubMed ID: 27665553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exocyst, exosomes, and autophagy in the regulation of Brassicaceae pollen-stigma interactions.
    Goring DR
    J Exp Bot; 2017 Dec; 69(1):69-78. PubMed ID: 29036428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen.
    Updegraff EP; Zhao F; Preuss D
    Sex Plant Reprod; 2009 Sep; 22(3):197-204. PubMed ID: 20033440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pollen stigma interactions in Brassica oleracea.
    Roberts IN; Stead AD; Ockendon DJ; Dickinson HG
    Theor Appl Genet; 1980 Nov; 58(6):241-6. PubMed ID: 24301500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructure of the mature pollen of Michelia figo (Lour.) Spreng. (Magnoliaceae).
    Dinis AM; Santo Dias JD; Mesquita JF
    J Submicrosc Cytol Pathol; 2000 Oct; 32(4):591-601. PubMed ID: 11297378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.