These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35226202)

  • 1. Dhurrin increases but does not mitigate oxidative stress in droughted Sorghum bicolor.
    Sohail MN; Quinn AA; Blomstedt CK; Gleadow RM
    Planta; 2022 Feb; 255(4):74. PubMed ID: 35226202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum.
    O'Donnell NH; Møller BL; Neale AD; Hamill JD; Blomstedt CK; Gleadow RM
    Plant Physiol Biochem; 2013 Dec; 73():83-92. PubMed ID: 24080394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Interplay Between Water Limitation, Dhurrin, and Nitrate in the Low-Cyanogenic Sorghum Mutant
    Rosati VC; Blomstedt CK; Møller BL; Garnett T; Gleadow R
    Front Plant Sci; 2019; 10():1458. PubMed ID: 31798611
    [No Abstract]   [Full Text] [Related]  

  • 4. A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production.
    Blomstedt CK; Gleadow RM; O'Donnell N; Naur P; Jensen K; Laursen T; Olsen CE; Stuart P; Hamill JD; Møller BL; Neale AD
    Plant Biotechnol J; 2012 Jan; 10(1):54-66. PubMed ID: 21880107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counting the costs: nitrogen partitioning in Sorghum mutants.
    Blomstedt CK; Rosati VC; Lindberg Møller B; Gleadow R
    Funct Plant Biol; 2018 Jun; 45(7):705-718. PubMed ID: 32291046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in production of cyanogenic glucosides during early plant development: A comparison of wild and domesticated sorghum.
    Cowan MF; Blomstedt CK; Møller BL; Henry RJ; Gleadow RM
    Phytochemistry; 2021 Apr; 184():112645. PubMed ID: 33482417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allocation of Resources to Cyanogenic Glucosides Does Not Incur a Growth Sacrifice in
    Sohail MN; Blomstedt CK; Gleadow RM
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33348715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of dhurrin pathway gene expression during Sorghum bicolor development.
    Gleadow RM; McKinley BA; Blomstedt CK; Lamb AC; Møller BL; Mullet JE
    Planta; 2021 Nov; 254(6):119. PubMed ID: 34762174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench).
    Blomstedt CK; O'Donnell NH; Bjarnholt N; Neale AD; Hamill JD; Møller BL; Gleadow RM
    Plant Cell Physiol; 2016 Feb; 57(2):373-86. PubMed ID: 26493517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drying and processing protocols affect the quantification of cyanogenic glucosides in forage sorghum.
    Gleadow RM; Møldrup ME; O'Donnell NH; Stuart PN
    J Sci Food Agric; 2012 Aug; 92(11):2234-8. PubMed ID: 22700371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple analytical method for dhurrin content evaluation in cyanogenic plants for their utilization in fodder and biofumigation.
    De Nicola GR; Leoni O; Malaguti L; Bernardi R; Lazzeri L
    J Agric Food Chem; 2011 Aug; 59(15):8065-9. PubMed ID: 21707058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcript profiles of wild and domesticated sorghum under water-stressed conditions and the differential impact on dhurrin metabolism.
    Ananda GKS; Norton SL; Blomstedt C; Furtado A; Møller BL; Gleadow R; Henry RJ
    Planta; 2022 Jan; 255(2):51. PubMed ID: 35084593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen availability and allocation in sorghum and its wild relatives: Divergent roles for cyanogenic glucosides.
    Myrans H; Vandegeer RK; Henry RJ; Gleadow RM
    J Plant Physiol; 2021; 258-259():153393. PubMed ID: 33667954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots.
    Franks TK; Powell KS; Choimes S; Marsh E; Iocco P; Sinclair BJ; Ford CM; van Heeswijck R
    Transgenic Res; 2006 Apr; 15(2):181-95. PubMed ID: 16604459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of Cyanide Poisoning in Cattle from
    Giantin S; Franzin A; Brusa F; Montemurro V; Bozzetta E; Caprai E; Fedrizzi G; Girolami F; Nebbia C
    Animals (Basel); 2024 Feb; 14(5):. PubMed ID: 38473128
    [No Abstract]   [Full Text] [Related]  

  • 16. Prediction of Dhurrin Metabolism by Transcriptome and Metabolome Analyses in
    Choi SC; Chung YS; Lee YG; Kang Y; Park YJ; Park SU; Kim C
    Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33086681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyanogenesis in the
    Cowan M; Møller BL; Norton S; Knudsen C; Crocoll C; Furtado A; Henry R; Blomstedt C; Gleadow RM
    Genes (Basel); 2022 Jan; 13(1):. PubMed ID: 35052482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seedling growth and fall armyworm feeding preference influenced by dhurrin production in sorghum.
    Gruss SM; Ghaste M; Widhalm JR; Tuinstra MR
    Theor Appl Genet; 2022 Mar; 135(3):1037-1047. PubMed ID: 35001177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging of Metabolites during Sorghum Germination.
    Montini L; Crocoll C; Gleadow RM; Motawia MS; Janfelt C; Bjarnholt N
    Plant Physiol; 2020 Jul; 183(3):925-942. PubMed ID: 32350122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione transferases catalyze recycling of auto-toxic cyanogenic glucosides in sorghum.
    Bjarnholt N; Neilson EHJ; Crocoll C; Jørgensen K; Motawia MS; Olsen CE; Dixon DP; Edwards R; Møller BL
    Plant J; 2018 Jun; 94(6):1109-1125. PubMed ID: 29659075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.