BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35226466)

  • 1. Ligand-Assisted Formation of Soluble Mn(III) and Bixbyite-like Mn
    Min D; Cheng L; Liu JQ; Liu DF; Li WW; Yu HQ
    Environ Sci Technol; 2022 Mar; 56(6):3812-3820. PubMed ID: 35226466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Manganese Oxide Nanoparticles by Shewanella Species.
    Wright MH; Farooqui SM; White AR; Greene AC
    Appl Environ Microbiol; 2016 Sep; 82(17):5402-9. PubMed ID: 27342559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abiotic transformation of atrazine in aqueous phase by biogenic bixbyite-type Mn
    Luo J; Ruan X; Chen W; Chen S; Ding Z; Chen A; Li D
    J Hazard Mater; 2022 Aug; 436():129243. PubMed ID: 35739762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene.
    DiChristina TJ; Moore CM; Haller CA
    J Bacteriol; 2002 Jan; 184(1):142-51. PubMed ID: 11741854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the inhibition of the bacteral reduction of U(VI) by beta-MnO2(s).
    Liu C; Zachara JM; Fredrickson JK; Kennedy DW; Dohnalkova A
    Environ Sci Technol; 2002 Apr; 36(7):1452-9. PubMed ID: 11999050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteriogenic manganese oxides.
    Spiro TG; Bargar JR; Sposito G; Tebo BM
    Acc Chem Res; 2010 Jan; 43(1):2-9. PubMed ID: 19778036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Riboflavin-mediated RDX transformation in the presence of Shewanella putrefaciens CN32 and lepidocrocite.
    Bae S; Lee Y; Kwon MJ; Lee W
    J Hazard Mater; 2014 Jun; 274():24-31. PubMed ID: 24762697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of manganese phosphate and manganese carbonate during long-term sorption of Mn(2+) by viable Shewanella putrefaciens: effects of contact time and temperature.
    Chubar N; Avramut C; Visser T
    Environ Sci Process Impacts; 2015 Apr; 17(4):780-90. PubMed ID: 25707532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis.
    Robinson DM; Go YB; Mui M; Gardner G; Zhang Z; Mastrogiovanni D; Garfunkel E; Li J; Greenblatt M; Dismukes GC
    J Am Chem Soc; 2013 Mar; 135(9):3494-501. PubMed ID: 23391134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of natural organic matter on zinc inhibition of hematite bioreduction by Shewanella putrefaciens CN32.
    Stone JJ; Royer RA; Dempsey BA; Burgos WD
    Environ Sci Technol; 2007 Aug; 41(15):5284-90. PubMed ID: 17822092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32.
    Liu C; Zachara JM; Gorby YA; Szecsody JE; Brown CF
    Environ Sci Technol; 2001 Apr; 35(7):1385-93. PubMed ID: 11348071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation.
    Tang Y; Zeiner CA; Santelli CM; Hansel CM
    Environ Microbiol; 2013 Apr; 15(4):1063-77. PubMed ID: 23157705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides.
    Taillefert M; Beckler JS; Carey E; Burns JL; Fennessey CM; DiChristina TJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1760-7. PubMed ID: 17765315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction.
    Johnson JE; Savalia P; Davis R; Kocar BD; Webb SM; Nealson KH; Fischer WW
    Environ Sci Technol; 2016 Apr; 50(8):4248-58. PubMed ID: 27018915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioenergetics of aerobic and anaerobic growth of
    Wray AC; Gorman-Lewis D
    Front Microbiol; 2023; 14():1234598. PubMed ID: 37601367
    [No Abstract]   [Full Text] [Related]  

  • 18. Intracellular manganese granules formed by a subsurface bacterium.
    Glasauer S; Langley S; Beveridge TJ
    Environ Microbiol; 2004 Oct; 6(10):1042-8. PubMed ID: 15344929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular haem peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide production.
    Andeer PF; Learman DR; McIlvin M; Dunn JA; Hansel CM
    Environ Microbiol; 2015 Oct; 17(10):3925-36. PubMed ID: 25923595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromium(iii) oxidation by biogenic manganese oxides with varying structural ripening.
    Tang Y; Webb SM; Estes ER; Hansel CM
    Environ Sci Process Impacts; 2014 Sep; 16(9):2127-36. PubMed ID: 25079661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.