These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35226894)

  • 21. Wetting boundaries for a ternary high-density-ratio lattice Boltzmann method.
    Bala N; Pepona M; Karlin I; Kusumaatmaja H; Semprebon C
    Phys Rev E; 2019 Jul; 100(1-1):013308. PubMed ID: 31499815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of line tension on axisymmetric nanoscale capillary bridges at the liquid-vapor equilibrium.
    Iwamatsu M; Mori H
    Phys Rev E; 2019 Oct; 100(4-1):042802. PubMed ID: 31770920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stretching liquid bridges with moving contact lines: comparison of liquid-transfer predictions and experiments.
    Huang CH; Carvalho MS; Kumar S
    Soft Matter; 2016 Sep; 12(36):7457-7469. PubMed ID: 27714294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo simulation of liquid bridge rupture: application to lung physiology.
    Alencar AM; Wolfe E; Buldyrev SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026311. PubMed ID: 17025543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contact angles from Young's equation in molecular dynamics simulations.
    Jiang H; Müller-Plathe F; Panagiotopoulos AZ
    J Chem Phys; 2017 Aug; 147(8):084708. PubMed ID: 28863512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic Contact Angles and Mechanisms of Motion of Water Droplets Moving on Nanopillared Superhydrophobic Surfaces: A Molecular Dynamics Simulation Study.
    Li H; Yan T; Fichthorn KA; Yu S
    Langmuir; 2018 Aug; 34(34):9917-9926. PubMed ID: 30059231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Taking a closer look: A molecular-dynamics investigation of microscopic and apparent dynamic contact angles.
    Fernández-Toledano JC; Blake TD; De Coninck J
    J Colloid Interface Sci; 2021 Apr; 587():311-323. PubMed ID: 33373793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio.
    Liang H; Liu H; Chai Z; Shi B
    Phys Rev E; 2019 Jun; 99(6-1):063306. PubMed ID: 31330728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A molecular dynamics study of the force between planar substrates due to capillary bridges.
    Saavedra JH; Rozas RE; Toledo PG
    J Colloid Interface Sci; 2014 Jul; 426():145-51. PubMed ID: 24863777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical Study of Droplet Dynamics on a Solid Surface with Insoluble Surfactants.
    Zhang J; Liu H; Ba Y
    Langmuir; 2019 Jun; 35(24):7858-7870. PubMed ID: 31120757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of hysteresis window on contact angle hysteresis behaviour at large Bond number.
    Yang J; Ma X; Fei L; Zhang X; Luo KH; Shuai S
    J Colloid Interface Sci; 2020 Apr; 566():327-337. PubMed ID: 32014676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulations of gravity-induced trapping of a deformable drop in a three-dimensional constriction.
    Ratcliffe T; Zinchenko AZ; Davis RH
    J Colloid Interface Sci; 2012 Oct; 383(1):167-76. PubMed ID: 22795042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method.
    Wang L; Huang HB; Lu XY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013301. PubMed ID: 23410454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lattice boltzmann study on the contact angle and contact line dynamics of liquid-vapor interfaces.
    Zhang J; Kwok DY
    Langmuir; 2004 Sep; 20(19):8137-41. PubMed ID: 15350084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding the asymmetry between advancing and receding microscopic contact angles.
    Omori T; Kobayashi Y; Yamaguchi Y; Kajishima T
    Soft Matter; 2019 May; 15(19):3923-3928. PubMed ID: 31011723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling Pendular Liquid Bridges with a Reducing Solid-Liquid Interface.
    Pepin X; Rossetti D; Simons SJ
    J Colloid Interface Sci; 2000 Dec; 232(2):298-302. PubMed ID: 11097764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wetting: Inverse Dynamic Problem and Equations for Microscopic Parameters.
    Voinov OV
    J Colloid Interface Sci; 2000 Jun; 226(1):5-15. PubMed ID: 11401339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Young's Equation for a Two-Liquid System on the Nanometer Scale.
    Fernandez-Toledano JC; Blake TD; De Coninck J
    Langmuir; 2017 Mar; 33(11):2929-2938. PubMed ID: 28248509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.