These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 35226997)
1. MAPK and β-Catenin signaling: implication and interplay in orthodontic tooth movement. Yong J; Groeger S; Meyle J; Ruf S Front Biosci (Landmark Ed); 2022 Feb; 27(2):54. PubMed ID: 35226997 [TBL] [Abstract][Full Text] [Related]
2. Expression of Wnt3a, Wnt10b, β-catenin and DKK1 in periodontium during orthodontic tooth movement in rats. Lu J; Duan Y; Zhang M; Wu M; Wang Y Acta Odontol Scand; 2016; 74(3):217-23. PubMed ID: 26414930 [TBL] [Abstract][Full Text] [Related]
3. Biological Events in Periodontal Ligament and Alveolar Bone Associated with Application of Orthodontic Forces. Feller L; Khammissa RA; Schechter I; Thomadakis G; Fourie J; Lemmer J ScientificWorldJournal; 2015; 2015():876509. PubMed ID: 26421314 [TBL] [Abstract][Full Text] [Related]
4. microRNA-21 Contributes to Orthodontic Tooth Movement. Chen N; Sui BD; Hu CH; Cao J; Zheng CX; Hou R; Yang ZK; Zhao P; Chen Q; Yang QJ; Jin Y; Jin F J Dent Res; 2016 Nov; 95(12):1425-1433. PubMed ID: 27422860 [TBL] [Abstract][Full Text] [Related]
5. Force-induced Adrb2 in periodontal ligament cells promotes tooth movement. Cao H; Kou X; Yang R; Liu D; Wang X; Song Y; Feng L; He D; Gan Y; Zhou Y J Dent Res; 2014 Nov; 93(11):1163-9. PubMed ID: 25252876 [TBL] [Abstract][Full Text] [Related]
6. KAT6A/YAP/TEAD4 pathway modulates osteoclastogenesis by regulating the RANKL/OPG ratio on the compression side during orthodontic tooth movement. Tan K; Wang J; Su X; Zheng Y; Li W Prog Orthod; 2024 Aug; 25(1):29. PubMed ID: 39129034 [TBL] [Abstract][Full Text] [Related]
7. Cyclic Stretch Enhances Osteogenic Differentiation of Human Periodontal Ligament Cells via YAP Activation. Yang Y; Wang BK; Chang ML; Wan ZQ; Han GL Biomed Res Int; 2018; 2018():2174824. PubMed ID: 30519570 [TBL] [Abstract][Full Text] [Related]
8. PTH/PTHrP in controlled release hydrogel enhances orthodontic tooth movement by regulating periodontal bone remodaling. Lu W; Li X; Yang Y; Yi J; Xie L; Zhao Z; Li Y J Periodontal Res; 2021 Oct; 56(5):885-896. PubMed ID: 33856055 [TBL] [Abstract][Full Text] [Related]
9. Osteoblast differentiation of Gli1⁺ cells via Wnt and BMP signaling pathways during orthodontic tooth movement. Seki Y; Takebe H; Nakao Y; Sato K; Mizoguchi T; Nakamura H; Iijima M; Hosoya A J Oral Biosci; 2024 Jun; 66(2):373-380. PubMed ID: 38499228 [TBL] [Abstract][Full Text] [Related]
10. Caffeine may enhance orthodontic tooth movement through increasing osteoclastogenesis induced by periodontal ligament cells under compression. Yi J; Yan B; Li M; Wang Y; Zheng W; Li Y; Zhao Z Arch Oral Biol; 2016 Apr; 64():51-60. PubMed ID: 26773691 [TBL] [Abstract][Full Text] [Related]
11. Axin2+ PDL Cells Directly Contribute to New Alveolar Bone Formation in Response to Orthodontic Tension Force. Wang K; Xu C; Xie X; Jing Y; Chen PJ; Yadav S; Wang Z; Taylor RW; Wang J; Feng JQ J Dent Res; 2022 Jun; 101(6):695-703. PubMed ID: 35001706 [TBL] [Abstract][Full Text] [Related]
12. Ubiquitin C-terminal hydrolase L1 activation in periodontal ligament cells mediates orthodontic tooth movement via the MAPK signaling pathway. Zheng F; Wang F; Wu T; Tang H; Li H; Cui X; Li C; Jiang J Connect Tissue Res; 2024 Sep; 65(5):421-432. PubMed ID: 39221694 [TBL] [Abstract][Full Text] [Related]
13. Wnt5a mediated canonical Wnt signaling pathway activation in orthodontic tooth movement: possible role in the tension force-induced bone formation. Fu HD; Wang BK; Wan ZQ; Lin H; Chang ML; Han GL J Mol Histol; 2016 Oct; 47(5):455-66. PubMed ID: 27456852 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Li Y; Zhan Q; Bao M; Yi J; Li Y Int J Oral Sci; 2021 Jun; 13(1):20. PubMed ID: 34183652 [TBL] [Abstract][Full Text] [Related]
15. Tension force-induced bone formation in orthodontic tooth movement via modulation of the GSK-3β/β-catenin signaling pathway. Mao Y; Wang L; Zhu Y; Liu Y; Dai H; Zhou J; Geng D; Wang L; Ji Y J Mol Histol; 2018 Feb; 49(1):75-84. PubMed ID: 29224185 [TBL] [Abstract][Full Text] [Related]
16. Autophagy of periodontal ligament inhibits inflammation and reduces the decline of bone density during orthodontic tooth movement of mice. Chen L; Hua Y Arch Oral Biol; 2021 Jan; 121():104960. PubMed ID: 33171395 [TBL] [Abstract][Full Text] [Related]
17. Sympathetic nervous system contributes to orthodontic tooth movement by central neural regulation from hypothalamus. Cao H; Fang B; Wang X; Zhou Y Histol Histopathol; 2020 Dec; 35(12):1493-1502. PubMed ID: 33179759 [TBL] [Abstract][Full Text] [Related]
18. GDF15 induced by compressive force contributes to osteoclast differentiation in human periodontal ligament cells. Li S; Li Q; Zhu Y; Hu W Exp Cell Res; 2020 Feb; 387(1):111745. PubMed ID: 31765611 [TBL] [Abstract][Full Text] [Related]
19. Tensile force-induced PDGF-BB/PDGFRβ signals in periodontal ligament fibroblasts activate JAK2/STAT3 for orthodontic tooth movement. Jin Y; Ding L; Ding Z; Fu Y; Song Y; Jing Y; Li Q; Zhang J; Ni Y; Hu Q Sci Rep; 2020 Jul; 10(1):11269. PubMed ID: 32647179 [TBL] [Abstract][Full Text] [Related]
20. Brain-derived neurotrophic factor promotes orthodontic tooth movement by alleviating periodontal ligament stem cell senescence. Meng L; Yang P; Zhang W; Zhang X; Rong X; Liu H; Li M Cell Signal; 2023 Aug; 108():110724. PubMed ID: 37211081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]