BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35226997)

  • 1. MAPK and β-Catenin signaling: implication and interplay in orthodontic tooth movement.
    Yong J; Groeger S; Meyle J; Ruf S
    Front Biosci (Landmark Ed); 2022 Feb; 27(2):54. PubMed ID: 35226997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of Wnt3a, Wnt10b, β-catenin and DKK1 in periodontium during orthodontic tooth movement in rats.
    Lu J; Duan Y; Zhang M; Wu M; Wang Y
    Acta Odontol Scand; 2016; 74(3):217-23. PubMed ID: 26414930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological Events in Periodontal Ligament and Alveolar Bone Associated with Application of Orthodontic Forces.
    Feller L; Khammissa RA; Schechter I; Thomadakis G; Fourie J; Lemmer J
    ScientificWorldJournal; 2015; 2015():876509. PubMed ID: 26421314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. microRNA-21 Contributes to Orthodontic Tooth Movement.
    Chen N; Sui BD; Hu CH; Cao J; Zheng CX; Hou R; Yang ZK; Zhao P; Chen Q; Yang QJ; Jin Y; Jin F
    J Dent Res; 2016 Nov; 95(12):1425-1433. PubMed ID: 27422860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force-induced Adrb2 in periodontal ligament cells promotes tooth movement.
    Cao H; Kou X; Yang R; Liu D; Wang X; Song Y; Feng L; He D; Gan Y; Zhou Y
    J Dent Res; 2014 Nov; 93(11):1163-9. PubMed ID: 25252876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic Stretch Enhances Osteogenic Differentiation of Human Periodontal Ligament Cells via YAP Activation.
    Yang Y; Wang BK; Chang ML; Wan ZQ; Han GL
    Biomed Res Int; 2018; 2018():2174824. PubMed ID: 30519570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PTH/PTHrP in controlled release hydrogel enhances orthodontic tooth movement by regulating periodontal bone remodaling.
    Lu W; Li X; Yang Y; Yi J; Xie L; Zhao Z; Li Y
    J Periodontal Res; 2021 Oct; 56(5):885-896. PubMed ID: 33856055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoblast differentiation of Gli1⁺ cells via Wnt and BMP signaling pathways during orthodontic tooth movement.
    Seki Y; Takebe H; Nakao Y; Sato K; Mizoguchi T; Nakamura H; Iijima M; Hosoya A
    J Oral Biosci; 2024 Jun; 66(2):373-380. PubMed ID: 38499228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caffeine may enhance orthodontic tooth movement through increasing osteoclastogenesis induced by periodontal ligament cells under compression.
    Yi J; Yan B; Li M; Wang Y; Zheng W; Li Y; Zhao Z
    Arch Oral Biol; 2016 Apr; 64():51-60. PubMed ID: 26773691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axin2+ PDL Cells Directly Contribute to New Alveolar Bone Formation in Response to Orthodontic Tension Force.
    Wang K; Xu C; Xie X; Jing Y; Chen PJ; Yadav S; Wang Z; Taylor RW; Wang J; Feng JQ
    J Dent Res; 2022 Jun; 101(6):695-703. PubMed ID: 35001706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wnt5a mediated canonical Wnt signaling pathway activation in orthodontic tooth movement: possible role in the tension force-induced bone formation.
    Fu HD; Wang BK; Wan ZQ; Lin H; Chang ML; Han GL
    J Mol Histol; 2016 Oct; 47(5):455-66. PubMed ID: 27456852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade.
    Li Y; Zhan Q; Bao M; Yi J; Li Y
    Int J Oral Sci; 2021 Jun; 13(1):20. PubMed ID: 34183652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tension force-induced bone formation in orthodontic tooth movement via modulation of the GSK-3β/β-catenin signaling pathway.
    Mao Y; Wang L; Zhu Y; Liu Y; Dai H; Zhou J; Geng D; Wang L; Ji Y
    J Mol Histol; 2018 Feb; 49(1):75-84. PubMed ID: 29224185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy of periodontal ligament inhibits inflammation and reduces the decline of bone density during orthodontic tooth movement of mice.
    Chen L; Hua Y
    Arch Oral Biol; 2021 Jan; 121():104960. PubMed ID: 33171395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sympathetic nervous system contributes to orthodontic tooth movement by central neural regulation from hypothalamus.
    Cao H; Fang B; Wang X; Zhou Y
    Histol Histopathol; 2020 Dec; 35(12):1493-1502. PubMed ID: 33179759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GDF15 induced by compressive force contributes to osteoclast differentiation in human periodontal ligament cells.
    Li S; Li Q; Zhu Y; Hu W
    Exp Cell Res; 2020 Feb; 387(1):111745. PubMed ID: 31765611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensile force-induced PDGF-BB/PDGFRβ signals in periodontal ligament fibroblasts activate JAK2/STAT3 for orthodontic tooth movement.
    Jin Y; Ding L; Ding Z; Fu Y; Song Y; Jing Y; Li Q; Zhang J; Ni Y; Hu Q
    Sci Rep; 2020 Jul; 10(1):11269. PubMed ID: 32647179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-derived neurotrophic factor promotes orthodontic tooth movement by alleviating periodontal ligament stem cell senescence.
    Meng L; Yang P; Zhang W; Zhang X; Rong X; Liu H; Li M
    Cell Signal; 2023 Aug; 108():110724. PubMed ID: 37211081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressive force-induced autophagy in periodontal ligament cells downregulates osteoclastogenesis during tooth movement.
    Chen L; Mo S; Hua Y
    J Periodontol; 2019 Oct; 90(10):1170-1181. PubMed ID: 31077358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthodontic tooth movement: The biology and clinical implications.
    Li Y; Jacox LA; Little SH; Ko CC
    Kaohsiung J Med Sci; 2018 Apr; 34(4):207-214. PubMed ID: 29655409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.