These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 35227007)
21. Synthesis of Antibacterial Nisin⁻Peptoid Hybrids Using Click Methodology. Bolt HL; Kleijn LHJ; Martin NI; Cobb SL Molecules; 2018 Jun; 23(7):. PubMed ID: 29958423 [TBL] [Abstract][Full Text] [Related]
22. Antimicrobial Activity of Different Antimicrobial Peptides (AMPs) Against Clinical Methicillin-resistant Staphylococcus aureus (MRSA). Ciandrini E; Morroni G; Arzeni D; Kamysz W; Neubauer D; Kamysz E; Cirioni O; Brescini L; Baffone W; Campana R Curr Top Med Chem; 2018; 18(24):2116-2126. PubMed ID: 30345920 [TBL] [Abstract][Full Text] [Related]
23. Structure-activity relationship study of novel peptoids that mimic the structure of antimicrobial peptides. Mojsoska B; Zuckermann RN; Jenssen H Antimicrob Agents Chemother; 2015 Jul; 59(7):4112-20. PubMed ID: 25941221 [TBL] [Abstract][Full Text] [Related]
24. Synthesis and evaluation of new quinazolin-4(3H)-one derivatives as potent antibacterial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Gatadi S; Gour J; Shukla M; Kaul G; Dasgupta A; Madhavi YV; Chopra S; Nanduri S Eur J Med Chem; 2019 Aug; 175():287-308. PubMed ID: 31096152 [TBL] [Abstract][Full Text] [Related]
25. Helicity Modulation Improves the Selectivity of Antimicrobial Peptoids. Nam HY; Choi J; Kumar SD; Nielsen JE; Kyeong M; Wang S; Kang D; Lee Y; Lee J; Yoon MH; Hong S; Lund R; Jenssen H; Shin SY; Seo J ACS Infect Dis; 2020 Oct; 6(10):2732-2744. PubMed ID: 32865961 [TBL] [Abstract][Full Text] [Related]
26. Manipulating turn residues on de novo designed β-hairpin peptides for selectivity against drug-resistant bacteria. Tram NDT; Selvarajan V; Boags A; Mukherjee D; Marzinek JK; Cheng B; Jiang ZC; Goh P; Koh JJ; Teo JWP; Bond PJ; Ee PLR Acta Biomater; 2021 Nov; 135():214-224. PubMed ID: 34506975 [TBL] [Abstract][Full Text] [Related]
27. A novel membrane-disruptive antimicrobial peptide from frog skin secretion against cystic fibrosis isolates and evaluation of anti-MRSA effect using Galleria mellonella model. Yuan Y; Zai Y; Xi X; Ma C; Wang L; Zhou M; Shaw C; Chen T Biochim Biophys Acta Gen Subj; 2019 May; 1863(5):849-856. PubMed ID: 30802593 [TBL] [Abstract][Full Text] [Related]
28. Antimicrobial β-peptides and α-peptoids. Godballe T; Nilsson LL; Petersen PD; Jenssen H Chem Biol Drug Des; 2011 Feb; 77(2):107-16. PubMed ID: 21266014 [TBL] [Abstract][Full Text] [Related]
29. Impact of Conjugation of the Reactive Oxygen Species (ROS)-Generating Catalytic Moiety with Membrane-Active Antimicrobial Peptoids: Promoting Multitarget Mechanism and Enhancing Selectivity. Song D; Kim B; Kim M; Lee JK; Choi J; Lee H; Shin S; Shin D; Nam HY; Lee Y; Lee S; Kim Y; Seo J J Med Chem; 2024 Sep; 67(17):15148-15167. PubMed ID: 39207209 [TBL] [Abstract][Full Text] [Related]
30. Halogenation as a tool to tune antimicrobial activity of peptoids. Molchanova N; Nielsen JE; Sørensen KB; Prabhala BK; Hansen PR; Lund R; Barron AE; Jenssen H Sci Rep; 2020 Sep; 10(1):14805. PubMed ID: 32908179 [TBL] [Abstract][Full Text] [Related]
31. Bacteriocin isolated from the natural inhabitant of Allium cepa against Staphylococcus aureus. Taggar R; Jangra M; Dwivedi A; Bansal K; Patil PB; Bhattacharyya MS; Nandanwar H; Sahoo DK World J Microbiol Biotechnol; 2021 Jan; 37(2):20. PubMed ID: 33427970 [TBL] [Abstract][Full Text] [Related]
32. Characterization of novel antimicrobial peptoids. Goodson B; Ehrhardt A; Ng S; Nuss J; Johnson K; Giedlin M; Yamamoto R; Moos WH; Krebber A; Ladner M; Giacona MB; Vitt C; Winter J Antimicrob Agents Chemother; 1999 Jun; 43(6):1429-34. PubMed ID: 10348765 [TBL] [Abstract][Full Text] [Related]
33. Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. Li C; Zhu C; Ren B; Yin X; Shim SH; Gao Y; Zhu J; Zhao P; Liu C; Yu R; Xia X; Zhang L Eur J Med Chem; 2019 Dec; 183():111686. PubMed ID: 31520928 [TBL] [Abstract][Full Text] [Related]
34. In vitro activity of 12 antimicrobial peptides against Mycobacterium tuberculosis and Mycobacterium avium clinical isolates. Portell-Buj E; Vergara A; Alejo I; López-Gavín A; Monté MR; San Nicolás L; González-Martín J; Tudó G J Med Microbiol; 2019 Feb; 68(2):211-215. PubMed ID: 30570475 [TBL] [Abstract][Full Text] [Related]
35. Highly selective end-tagged antimicrobial peptides derived from PRELP. Malmsten M; Kasetty G; Pasupuleti M; Alenfall J; Schmidtchen A PLoS One; 2011 Jan; 6(1):e16400. PubMed ID: 21298015 [TBL] [Abstract][Full Text] [Related]
36. Antimicrobial activities of twenty lysine-peptoid hybrids against clinically relevant bacteria and fungi. Ryge TS; Frimodt-Møller N; Hansen PR Chemotherapy; 2008; 54(2):152-6. PubMed ID: 18332629 [TBL] [Abstract][Full Text] [Related]
37. Antimicrobial Peptides and Small Molecules Targeting the Cell Membrane of Staphylococcus aureus. Ganesan N; Mishra B; Felix L; Mylonakis E Microbiol Mol Biol Rev; 2023 Jun; 87(2):e0003722. PubMed ID: 37129495 [TBL] [Abstract][Full Text] [Related]
38. Non hemolytic short peptidomimetics as a new class of potent and broad-spectrum antimicrobial agents. Murugan RN; Jacob B; Kim EH; Ahn M; Sohn H; Seo JH; Cheong C; Hyun JK; Lee KS; Shin SY; Bang JK Bioorg Med Chem Lett; 2013 Aug; 23(16):4633-6. PubMed ID: 23816372 [TBL] [Abstract][Full Text] [Related]