These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35227387)

  • 1. Paper based microfluidic platform for single-step detection of mesenchymal stromal cells secreted VEGF.
    Azuaje-Hualde E; de Pancorbo MM; Benito-Lopez F; Basabe-Desmonts L
    Anal Chim Acta; 2022 Mar; 1199():339588. PubMed ID: 35227387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell VEGF Analysis by Fluorescence Imaging-Microfluidic Droplet Platform: An Immunosandwich Strategy on the Cell Surface.
    Cong L; Tian Y; Huo Z; Xu W; Hou C; Shi W; Wang W; Liang C; Xu S
    Anal Chem; 2022 May; 94(17):6591-6598. PubMed ID: 35446550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescence biosensor for VEGF detection based on DNA assembly structure switching and isothermal amplification.
    Li J; Sun K; Chen Z; Shi J; Zhou D; Xie G
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):964-969. PubMed ID: 27816590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of cell metabolite VEGF₁₆₅ and dynamic analysis of protein-DNA interactions by combination of microfluidic technique and luminescent switch-on probe.
    Lin X; Leung KH; Lin L; Lin L; Lin S; Leung CH; Ma DL; Lin JM
    Biosens Bioelectron; 2016 May; 79():41-7. PubMed ID: 26686922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VEGF Detection via Simplified FLISA Using a 3D Microfluidic Disk Platform.
    Kang DH; Kim NK; Park SW; Kang HW
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Distance-Based Microfluidic Paper-Based Biosensor for Glucose Measurements in Tear Range.
    Allameh S; Rabbani M
    Appl Biochem Biotechnol; 2022 May; 194(5):2077-2092. PubMed ID: 35029790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip porous microgel generation for microfluidic enhanced VEGF detection.
    Zhao Z; Al-Ameen MA; Duan K; Ghosh G; Lo JF
    Biosens Bioelectron; 2015 Dec; 74():305-12. PubMed ID: 26148675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): A review.
    Dehghani S; Nosrati R; Yousefi M; Nezami A; Soltani F; Taghdisi SM; Abnous K; Alibolandi M; Ramezani M
    Biosens Bioelectron; 2018 Jul; 110():23-37. PubMed ID: 29579646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection.
    Zuo P; Li X; Dominguez DC; Ye BC
    Lab Chip; 2013 Oct; 13(19):3921-8. PubMed ID: 23929394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection.
    Weng X; Neethirajan S
    Biosens Bioelectron; 2016 Nov; 85():649-656. PubMed ID: 27240012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF).
    Freeman R; Girsh J; Jou AF; Ho JA; Hug T; Dernedde J; Willner I
    Anal Chem; 2012 Jul; 84(14):6192-8. PubMed ID: 22746189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures.
    Zhou R; Wang C; Huang Y; Huang K; Wang Y; Xu W; Xie L; Ying Y
    Biosens Bioelectron; 2021 Sep; 188():113336. PubMed ID: 34022719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip synthesis of RNA aptamer microarrays for multiplexed protein biosensing with SPR imaging measurements.
    Chen Y; Nakamoto K; Niwa O; Corn RM
    Langmuir; 2012 Jun; 28(22):8281-5. PubMed ID: 22458258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme embedded microfluidic paper-based analytic device (μPAD): a comprehensive review.
    Nadar SS; Patil PD; Tiwari MS; Ahirrao DJ
    Crit Rev Biotechnol; 2021 Nov; 41(7):1046-1080. PubMed ID: 33730940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels.
    Zhang H; Hu X; Fu X
    Biosens Bioelectron; 2014 Jul; 57():22-9. PubMed ID: 24534576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications.
    Luka G; Ahmadi A; Najjaran H; Alocilja E; DeRosa M; Wolthers K; Malki A; Aziz H; Althani A; Hoorfar M
    Sensors (Basel); 2015 Dec; 15(12):30011-31. PubMed ID: 26633409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of aptamers on microfluidic systems for clinical applications.
    Weng CH; Huang CJ; Lee GB
    Sensors (Basel); 2012; 12(7):9514-29. PubMed ID: 23012556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection.
    Arshavsky-Graham S; Enders A; Ackerman S; Bahnemann J; Segal E
    Mikrochim Acta; 2021 Feb; 188(3):67. PubMed ID: 33543321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immuno-biosensor on a chip: a self-powered microfluidic-based electrochemical biosensing platform for point-of-care quantification of proteins.
    Haghayegh F; Salahandish R; Zare A; Khalghollah M; Sanati-Nezhad A
    Lab Chip; 2021 Dec; 22(1):108-120. PubMed ID: 34860233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A portable oligonucleotide-based microfluidic device for the detection of VEGF
    Ko CN; Sun H; Wu KJ; Leung CH; Ren K; Ma DL
    Dalton Trans; 2019 Jul; 48(26):9824-9830. PubMed ID: 31147654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.