These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 35227717)
1. Extending the benefits of PGPR to bioremediation of nitrile pollution in crop lands for enhancing crop productivity. Vaishnav A; Kumar R; Singh HB; Sarma BK Sci Total Environ; 2022 Jun; 826():154170. PubMed ID: 35227717 [TBL] [Abstract][Full Text] [Related]
2. Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. Saeed Q; Xiukang W; Haider FU; Kučerik J; Mumtaz MZ; Holatko J; Naseem M; Kintl A; Ejaz M; Naveed M; Brtnicky M; Mustafa A Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638870 [TBL] [Abstract][Full Text] [Related]
3. Pesticide-tolerant microbial consortia: Potential candidates for remediation/clean-up of pesticide-contaminated agricultural soil. Shahid M; Khan MS; Singh UB Environ Res; 2023 Nov; 236(Pt 1):116724. PubMed ID: 37500042 [TBL] [Abstract][Full Text] [Related]
4. Molecular and eco-physiological responses of soil-borne lead (Pb Pal P; Pramanik K; Ghosh SK; Mondal S; Mondal T; Soren T; Maiti TK Microbiol Res; 2024 Oct; 287():127831. PubMed ID: 39079267 [TBL] [Abstract][Full Text] [Related]
5. New advances in plant growth-promoting rhizobacteria for bioremediation. Zhuang X; Chen J; Shim H; Bai Z Environ Int; 2007 Apr; 33(3):406-13. PubMed ID: 17275086 [TBL] [Abstract][Full Text] [Related]
6. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Hassan W; Bano R; Bashir F; David J Environ Sci Pollut Res Int; 2014 Sep; 21(18):10983-96. PubMed ID: 24888619 [TBL] [Abstract][Full Text] [Related]
7. PGPR: Key to Enhancing Crop Productivity and Achieving Sustainable Agriculture. He S; Li L; Lv M; Wang R; Wang L; Yu S; Gao Z; Li X Curr Microbiol; 2024 Sep; 81(11):377. PubMed ID: 39325205 [TBL] [Abstract][Full Text] [Related]
8. PGPR-Enabled bioremediation of pesticide and heavy metal-contaminated soil: A review of recent advances and emerging challenges. Sharma I; Sharma S; Sharma V; Singh AK; Sharma A; Kumar A; Singh J; Sharma A Chemosphere; 2024 Aug; 362():142678. PubMed ID: 38908452 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana, India. Sharma A; Dev K; Sourirajan A; Choudhary M J Genet Eng Biotechnol; 2021 Jun; 19(1):99. PubMed ID: 34181159 [TBL] [Abstract][Full Text] [Related]
10. Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. Halim MA; Rahman MM; Megharaj M; Naidu R J Agric Food Chem; 2020 Nov; 68(47):13497-13529. PubMed ID: 33170689 [TBL] [Abstract][Full Text] [Related]
11. Transformation of the herbicide 2,6-dichlorobenzonitrile to the persistent metabolite 2,6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase. Holtze MS; Sørensen J; Hansen HC; Aamand J Biodegradation; 2006 Dec; 17(6):503-10. PubMed ID: 16496093 [TBL] [Abstract][Full Text] [Related]
12. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012 [TBL] [Abstract][Full Text] [Related]
13. Plant growth-promoting rhizobacteria: a potential bio-asset for restoration of degraded soil and crop productivity with sustainable emerging techniques. Upadhyay SK; Rajput VD; Kumari A; Espinosa-Saiz D; Menendez E; Minkina T; Dwivedi P; Mandzhieva S Environ Geochem Health; 2023 Dec; 45(12):9321-9344. PubMed ID: 36413266 [TBL] [Abstract][Full Text] [Related]
14. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Khatoon Z; Huang S; Rafique M; Fakhar A; Kamran MA; Santoyo G J Environ Manage; 2020 Nov; 273():111118. PubMed ID: 32741760 [TBL] [Abstract][Full Text] [Related]
15. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Nadeem SM; Ahmad M; Zahir ZA; Javaid A; Ashraf M Biotechnol Adv; 2014; 32(2):429-48. PubMed ID: 24380797 [TBL] [Abstract][Full Text] [Related]
16. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Meena M; Swapnil P; Divyanshu K; Kumar S; Harish ; Tripathi YN; Zehra A; Marwal A; Upadhyay RS J Basic Microbiol; 2020 Oct; 60(10):828-861. PubMed ID: 32815221 [TBL] [Abstract][Full Text] [Related]
17. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review. Guo J; Muhammad H; Lv X; Wei T; Ren X; Jia H; Atif S; Hua L Chemosphere; 2020 May; 246():125823. PubMed ID: 31927380 [TBL] [Abstract][Full Text] [Related]
18. Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Egamberdieva D; Wirth S; Bellingrath-Kimura SD; Mishra J; Arora NK Front Microbiol; 2019; 10():2791. PubMed ID: 31921005 [TBL] [Abstract][Full Text] [Related]
19. Plant growth-promoting rhizobacteria as an alternative to mineral fertilizers in assisted bioremediation - Sustainable land and waste management. Grobelak A; Kokot P; Hutchison D; Grosser A; Kacprzak M J Environ Manage; 2018 Dec; 227():1-9. PubMed ID: 30170232 [TBL] [Abstract][Full Text] [Related]
20. Influence of plant beneficial Stenotrophomonas rhizophila strain CASB3 on the degradation of diuron-contaminated saline soil and improvement of Lactuca sativa growth. Silambarasan S; Logeswari P; Ruiz A; Cornejo P; Kannan VR Environ Sci Pollut Res Int; 2020 Oct; 27(28):35195-35207. PubMed ID: 32588300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]