BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35227747)

  • 21. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.
    Fan CS; Liou SYH; Hou CH
    Chemosphere; 2017 Oct; 184():924-931. PubMed ID: 28655111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater.
    Li L; van Genuchten CM; Addy SE; Yao J; Gao N; Gadgil AJ
    Environ Sci Technol; 2012 Nov; 46(21):12038-45. PubMed ID: 22978489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of sono-electrocoagulation in arsenic removal from aqueous solutions and the related human health risk assessment.
    Sadeghi H; Mohammadpour A; Samaei MR; Azhdarpoor A; Hadipoor M; Mehrazmay H; Mousavi Khaneghah A
    Environ Res; 2022 Sep; 212(Pt A):113147. PubMed ID: 35341750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrating biological As(III) oxidation with Fe(0) electrocoagulation for arsenic removal from groundwater.
    Roy M; van Genuchten CM; Rietveld L; van Halem D
    Water Res; 2021 Jan; 188():116531. PubMed ID: 33126004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Field demonstration of solar-powered electrocoagulation water treatment system for purifying groundwater contaminated by both total coliforms and arsenic.
    Oh C; Pak S; Han YS; Ha NTH; Hong M; Ji S
    Environ Technol; 2021 Jan; 42(3):397-409. PubMed ID: 31179862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How do operating conditions affect As(III) removal by iron electrocoagulation?
    Delaire C; Amrose S; Zhang M; Hake J; Gadgil A
    Water Res; 2017 Apr; 112():185-194. PubMed ID: 28160698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of iron, phosphate, and silicate on arsenic removal from groundwater using a low-cost ceramic filter.
    Shafiquzzaman M; Haider H; Azam MS; Ahsan A; Alresheedi M; AlSaleem SS; Ghumman AR; Ahmed AT
    Water Environ Res; 2023 Nov; 95(11):e10942. PubMed ID: 37872103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fate of low arsenic concentrations during full-scale aeration and rapid filtration.
    Gude JCJ; Rietveld LC; van Halem D
    Water Res; 2016 Jan; 88():566-574. PubMed ID: 26547752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Life cycle assessment (LCA) of the arsenic and fluoride removal from groundwater through adsorption and electrocoagulation: A comparative study.
    Goyal H; Mondal P
    Chemosphere; 2022 Oct; 304():135243. PubMed ID: 35679977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hybrid system for groundwater denitrification using electrocoagulation and adsorption.
    Ziouvelou A; Tekerlekopoulou AG; Vayenas DV
    J Environ Manage; 2019 Nov; 249():109355. PubMed ID: 31499372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative study of electrocoagulation treatment with iron, aluminum and zinc electrodes for selenium removal from flour production wastewater.
    Gong C; Zhang J; Ren X; He C; Han J; Zhang Z
    Chemosphere; 2022 Sep; 303(Pt 3):135249. PubMed ID: 35691397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removing arsenic from synthetic groundwater with iron electrocoagulation: an Fe and As K-edge EXAFS study.
    van Genuchten CM; Addy SE; Peña J; Gadgil AJ
    Environ Sci Technol; 2012 Jan; 46(2):986-94. PubMed ID: 22132945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removing arsenic from groundwater in Cambodia using high performance iron adsorbent.
    Kang Y; Takeda R; Nada A; Thavarith L; Tang S; Nuki K; Sakurai K
    Environ Monit Assess; 2014 Sep; 186(9):5605-16. PubMed ID: 24894910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates.
    Delaire C; van Genuchten CM; Amrose SE; Gadgil AJ
    Water Res; 2016 Oct; 103():74-82. PubMed ID: 27438902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined electrocoagulation and electrochemical oxidation treatment for groundwater denitrification.
    Benekos AK; Tsigara M; Zacharakis S; Triantaphyllidou IE; Tekerlekopoulou AG; Katsaounis A; Vayenas DV
    J Environ Manage; 2021 May; 285():112068. PubMed ID: 33581453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous removal of arsenite and fluoride via an integrated electro-oxidation and electrocoagulation process.
    Zhao X; Zhang B; Liu H; Qu J
    Chemosphere; 2011 Apr; 83(5):726-9. PubMed ID: 21392815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. House hold unit for the treatment of fluoride, iron, arsenic and microorganism contaminated drinking water.
    Dhadge VL; Medhi CR; Changmai M; Purkait MK
    Chemosphere; 2018 May; 199():728-736. PubMed ID: 29475161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation.
    Wan W; Pepping TJ; Banerji T; Chaudhari S; Giammar DE
    Water Res; 2011 Jan; 45(1):384-92. PubMed ID: 20800261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous removal of fluoride and nitrate from synthetic aqueous solution and groundwater by the electrochemical process using non-coated and coated anode electrodes: A human health risk study.
    Ashoori R; Samaei MR; Yousefinejad S; Azhdarpoor A; Emadi Z; Mohammadpour A; Lari AR; Mousavi Khaneghah A
    Environ Res; 2022 Nov; 214(Pt 3):113938. PubMed ID: 35977584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of arsenic from water by electrocoagulation.
    Ratna Kumar P; Chaudhari S; Khilar KC; Mahajan SP
    Chemosphere; 2004 Jun; 55(9):1245-52. PubMed ID: 15081765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.