BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35227972)

  • 1. An optoelectronic neural interface approach for precise superposition of optical and electrical stimulation in flexible array structures.
    Eickenscheidt M; Herrmann T; Weisshap M; Mittnacht A; Rudmann L; Zeck G; Stieglitz T
    Biosens Bioelectron; 2022 Jun; 205():114090. PubMed ID: 35227972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM
    J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transparent poly(3,4-ethylenedioxythiophene)-based microelectrodes for extracellular recording.
    Flachs D; Köhler T; Thielemann C
    Biointerphases; 2018 Aug; 13(4):041008. PubMed ID: 30081642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FEM-based design of optical transparent indium tin oxide multielectrode arrays for multiparametric, high sensitive cell based assays.
    Jahnke HG; Schmidt S; Frank R; Weigel W; Prönnecke C; Robitzki AA
    Biosens Bioelectron; 2019 Mar; 129():208-215. PubMed ID: 30337105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of Transparent, PEDOT:PSS Coated Indium-Tin-Oxide (ITO) Microelectrodes.
    Yang W; Broski A; Wu J; Fan QH; Li W
    IEEE Trans Nanotechnol; 2018 Jul; 17(4):701-704. PubMed ID: 30745860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TFT sensor array for real-time cellular characterization, stimulation, impedance measurement and optical imaging of in-vitro neural cells.
    Shaik FA; Ihida S; Ikeuchi Y; Tixier-Mita A; Toshiyoshi H
    Biosens Bioelectron; 2020 Dec; 169():112546. PubMed ID: 32911315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics.
    Kwon KY; Sirowatka B; Weber A; Li W
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):593-600. PubMed ID: 24144668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation.
    Jiang X; Sui X; Lu Y; Yan Y; Zhou C; Li L; Ren Q; Chai X
    J Neuroeng Rehabil; 2013 May; 10():48. PubMed ID: 23718827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and evaluation of thin-film flexible microelectrode arrays for retinal stimulation and recording.
    Mathieson K; Moodie AR; Grant E; Morrison JD
    J Med Eng Technol; 2013 Feb; 37(2):79-85. PubMed ID: 23249248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical stimulation of cultured neurons using a simply patterned indium-tin-oxide (ITO) glass electrode.
    Tanamoto R; Shindo Y; Miki N; Matsumoto Y; Hotta K; Oka K
    J Neurosci Methods; 2015 Sep; 253():272-8. PubMed ID: 26185873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fully transparent, flexible PEDOT:PSS-ITO-Ag-ITO based microelectrode array for ECoG recording.
    Yang W; Gong Y; Yao CY; Shrestha M; Jia Y; Qiu Z; Fan QH; Weber A; Li W
    Lab Chip; 2021 Mar; 21(6):1096-1108. PubMed ID: 33522526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible PET/ITO electrode array for implantable biomedical applications.
    Ahani A; Saadati-Fard L; Sodagar AM; Boroumad FA
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2878-81. PubMed ID: 22254942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection.
    Fiscella M; Farrow K; Jones IL; Jäckel D; Müller J; Frey U; Bakkum DJ; Hantz P; Roska B; Hierlemann A
    J Neurosci Methods; 2012 Oct; 211(1):103-13. PubMed ID: 22939921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An open-source transparent microelectrode array.
    Weaver IA; Li AW; Shields BC; Tadross MR
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35349992
    [No Abstract]   [Full Text] [Related]  

  • 16. Transparent Microelectrode Arrays Fabricated by Ion Beam Assisted Deposition for Neuronal Cell in Vitro Recordings.
    Ryynänen T; Mzezewa R; Meriläinen E; Hyvärinen T; Lekkala J; Narkilahti S; Kallio P
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32423145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress on Transparent Microelectrode-Based Soft Bioelectronic Devices for Neuroscience and Cardiac Research.
    Lu L
    ACS Appl Bio Mater; 2023 May; 6(5):1701-1719. PubMed ID: 37076978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.
    Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X
    Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evoked cortical potentials after electrical stimulation of the inner retina in rabbits.
    Walter P; Heimann K
    Graefes Arch Clin Exp Ophthalmol; 2000 Apr; 238(4):315-8. PubMed ID: 10853930
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.