These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35228041)

  • 1. Quantitative analysis of polymer-grafted cellulose nanocrystals using a ssNMR method on the basis of cross polarization reciprocity relation.
    Tang D; Liu Y; Wang N; Dong H; Zhang Z; Yuan Y; Shu J
    Carbohydr Res; 2022 Mar; 513():108519. PubMed ID: 35228041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the degree of acetylation of chitin/chitosan using a SSNMR
    Tang D; Qian J; Wang N; Shu J
    Carbohydr Res; 2020 Dec; 498():108168. PubMed ID: 33049653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Reaction Media on Grafting Hydrophobic Polymers from Cellulose Nanocrystals
    Kiriakou MV; Berry RM; Hoare T; Cranston ED
    Biomacromolecules; 2021 Aug; 22(8):3601-3612. PubMed ID: 34252279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications.
    Ganguly K; Patel DK; Dutta SD; Shin WC; Lim KT
    Int J Biol Macromol; 2020 Jul; 155():456-469. PubMed ID: 32222290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals.
    Azzam F; Heux L; Putaux JL; Jean B
    Biomacromolecules; 2010 Dec; 11(12):3652-9. PubMed ID: 21058640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.
    Kan KH; Li J; Wijesekera K; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes.
    Zoppe JO; Osterberg M; Venditti RA; Laine J; Rojas OJ
    Biomacromolecules; 2011 Jul; 12(7):2788-96. PubMed ID: 21648448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid-State NMR Analysis of Nanocelluloses.
    King AWT; Mäkelä V; Kedzior SA; Laaksonen T; Partl GJ; Heikkinen S; Koskela H; Heikkinen HA; Holding AJ; Cranston ED; Kilpeläinen I
    Biomacromolecules; 2018 Jul; 19(7):2708-2720. PubMed ID: 29614220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating Cellulose Nanocrystals into the Core of Polymer Latex Particles via Polymer Grafting.
    Kedzior SA; Kiriakou M; Niinivaara E; Dubé MA; Fraschini C; Berry RM; Cranston ED
    ACS Macro Lett; 2018 Aug; 7(8):990-996. PubMed ID: 35650951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanocrystals: a versatile nanoplatform for emerging biomedical applications.
    Sunasee R; Hemraz UD; Ckless K
    Expert Opin Drug Deliv; 2016 Sep; 13(9):1243-56. PubMed ID: 27110733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of Polymer-Grafted Cellulose Nanocrystals into Latex-Based Pressure-Sensitive Adhesives.
    Kiriakou MV; Pakdel AS; Berry RM; Hoare T; Dubé MA; Cranston ED
    ACS Mater Au; 2022 Mar; 2(2):176-189. PubMed ID: 36855757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose nanocrystal driven microphase separated nanocomposites: Enhanced mechanical performance and nanostructured morphology.
    Zhang J; Zhang X; Li MC; Dong J; Lee S; Cheng HN; Lei T; Wu Q
    Int J Biol Macromol; 2019 Jun; 130():685-694. PubMed ID: 30826401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals.
    Azzam F; Siqueira E; Fort S; Hassaini R; Pignon F; Travelet C; Putaux JL; Jean B
    Biomacromolecules; 2016 Jun; 17(6):2112-9. PubMed ID: 27116589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes.
    Zoppe JO; Venditti RA; Rojas OJ
    J Colloid Interface Sci; 2012 Mar; 369(1):202-9. PubMed ID: 22204973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collection of airborne ultrafine cellulose nanocrystals by impinger with an efficiency mimicking deposition in the human respiratory system.
    Roberts R; Gettz K; Stebounova LV; Anne Shatkin J; Peters T; Johan Foster E
    J Occup Environ Hyg; 2019 Feb; 16(2):141-150. PubMed ID: 30427281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding.
    Rosilo H; McKee JR; Kontturi E; Koho T; Hytönen VP; Ikkala O; Kostiainen MA
    Nanoscale; 2014 Oct; 6(20):11871-81. PubMed ID: 25171730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study.
    Boujemaoui A; Cobo Sanchez C; Engström J; Bruce C; Fogelström L; Carlmark A; Malmström E
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35305-35318. PubMed ID: 28895728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis.
    Camarero Espinosa S; Kuhnt T; Foster EJ; Weder C
    Biomacromolecules; 2013 Apr; 14(4):1223-30. PubMed ID: 23458473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid Crystalline Properties of Symmetric and Asymmetric End-Grafted Cellulose Nanocrystals.
    Delepierre G; Traeger H; Adamcik J; Cranston ED; Weder C; Zoppe JO
    Biomacromolecules; 2021 Aug; 22(8):3552-3564. PubMed ID: 34297531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual Light- and pH-Responsive Composite of Polyazo-Derivative Grafted Cellulose Nanocrystals.
    Liu X; Li M; Zheng X; Retulainen E; Fu S
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30223462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.