These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 35228044)

  • 1. Co-Co
    Hu X; Min X; Li X; Si M; Liu L; Zheng J; Yang W; Zhao F
    J Colloid Interface Sci; 2022 Jun; 616():389-400. PubMed ID: 35228044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes.
    Dong Q; Wang G; Wu T; Peng S; Qiu J
    J Colloid Interface Sci; 2015 May; 446():373-8. PubMed ID: 25595622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced capacitive deionization properties of activated carbon doped with carbon nanotube-bridged molybdenum disulfide.
    Sun J; Li Y; Song H; Li H; Lai Q; Egabaierdi G; Li Q; Zhang S; He H; Li A
    Chemosphere; 2023 Jan; 310():136740. PubMed ID: 36209852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co
    Wang S; Zhang X; Huang J; Chen J
    Anal Bioanal Chem; 2018 Mar; 410(7):2019-2029. PubMed ID: 29392380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-Doping Carbon-Nanotube Membrane Electrodes Derived from Covalent Organic Frameworks for Efficient Capacitive Deionization.
    Ren L; Zhou J; Xiong S; Wang Y
    Langmuir; 2020 Oct; 36(40):12030-12037. PubMed ID: 32957785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes.
    Li H; Gao Y; Pan L; Zhang Y; Chen Y; Sun Z
    Water Res; 2008 Dec; 42(20):4923-8. PubMed ID: 18929385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Activated Carbon Decorated with ZnO Nanorod-Based Electrodes for Desalination of Brackish Water Using Capacitive Deionization Technology.
    Martinez J; Colán M; Castillón R; Ramos PG; Paria R; Sánchez L; Rodríguez JM
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled fabrication of nitrogen-doped porous carbon foam with refined hierarchical architectures for desalination via capacitive deionization.
    Gong C; Chen Z; Geng W; Fu Z; Chen C; Zhang Y; Wang G
    J Colloid Interface Sci; 2023 Aug; 643():516-527. PubMed ID: 37088054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel mesoporous Co
    Delfani E; Khodabakhshi A; Habibzadeh S; Naji L; Ganjali MR
    RSC Adv; 2021 Dec; 12(2):907-920. PubMed ID: 35425095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinel LiMn
    Jiang Y; Li K; Alhassan SI; Cao Y; Deng H; Tan S; Wang H; Tang C; Chai L
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and Application of Electrodes in Capacitive Deionization (CDI): a State-of-Art Review.
    Jia B; Zhang W
    Nanoscale Res Lett; 2016 Dec; 11(1):64. PubMed ID: 26842797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving Enhanced Capacitive Deionization by Interfacial Coupling in PEDOT Reinforced Cobalt Hexacyanoferrate Nanoflake Arrays.
    Shi W; Xue M; Qian X; Xu X; Gao X; Zheng D; Liu W; Wu F; Gao C; Shen J; Cao X
    Glob Chall; 2021 Aug; 5(8):2000128. PubMed ID: 34377532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible ultrathin Nitrogen-Doped carbon mediates the surface charge redistribution of a hierarchical tin disulfide nanoflake electrode for efficient capacitive deionization.
    Gao M; Liang W; Yang Z; Ao T; Chen W
    J Colloid Interface Sci; 2023 Nov; 650(Pt B):1244-1252. PubMed ID: 37478741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater.
    Sayed ET; Al Radi M; Ahmad A; Abdelkareem MA; Alawadhi H; Atieh MA; Olabi AG
    Chemosphere; 2021 Jul; 275():130001. PubMed ID: 33984902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na
    Cao J; Wang Y; Wang L; Yu F; Ma J
    Nano Lett; 2019 Feb; 19(2):823-828. PubMed ID: 30658040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Desalination Performance of Capacitive Deionization Using Nanoporous Carbon Derived from ZIF-67 Metal Organic Frameworks and CNTs.
    Phuoc NM; Jung E; Tran NAT; Lee YW; Yoo CY; Kang BG; Cho Y
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33105663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization.
    Xu L; Peng S; Mao Y; Zong Y; Zhang X; Wu D
    Water Res; 2022 Jun; 216():118290. PubMed ID: 35306460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudocapacitive Deionization of Saltwater by Mn
    Chen PA; Liu SH; Wang HP
    ACS Omega; 2023 Apr; 8(14):13315-13322. PubMed ID: 37065037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed electrodes for efficient membrane capacitive deionization.
    Vafakhah S; Sim GJ; Saeedikhani M; Li X; Valdivia Y Alvarado P; Yang HY
    Nanoscale Adv; 2019 Dec; 1(12):4804-4811. PubMed ID: 36133144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes.
    Cho Y; Yoo CY; Lee SW; Yoon H; Lee KS; Yang S; Kim DK
    Water Res; 2019 Mar; 151():252-259. PubMed ID: 30605773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.