These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35228074)

  • 1. Linking electron ionization mass spectra of organic chemicals to toxicity endpoints through machine learning and experimentation.
    Hu S; Liu G; Zhang J; Yan J; Zhou H; Yan X
    J Hazard Mater; 2022 Jun; 431():128558. PubMed ID: 35228074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of chemical toxicity to Tetrahymena pyriformis with four-descriptor models.
    Yu X
    Ecotoxicol Environ Saf; 2020 Mar; 190():110146. PubMed ID: 31923753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random forest algorithm-based accurate prediction of chemical toxicity to Tetrahymena pyriformis.
    Fang Z; Yu X; Zeng Q
    Toxicology; 2022 Oct; 480():153325. PubMed ID: 36115645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity of organic chemicals to Tetrahymena pyriformis: effect of polarity and ionization on toxicity.
    Zhao YH; Zhang XJ; Wen Y; Sun FT; Guo Z; Qin WC; Qin HW; Xu JL; Sheng LX; Abraham MH
    Chemosphere; 2010 Mar; 79(1):72-7. PubMed ID: 20079521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two QSAR models for predicting the toxicity of chemicals towards
    Jia Q; Wang S; Yu M; Wang Q; Yan F
    SAR QSAR Environ Res; 2023 Feb; 34(2):147-161. PubMed ID: 36749040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR analysis of the acute toxicity of avermectins towards
    Tinkov OV; Grigorev VY; Grigoreva LD
    SAR QSAR Environ Res; 2021 Jul; 32(7):541-571. PubMed ID: 34157880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.
    Cheng F; Shen J; Yu Y; Li W; Liu G; Lee PW; Tang Y
    Chemosphere; 2011 Mar; 82(11):1636-43. PubMed ID: 21145574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Influence of Structural Patterns on Acute Aquatic Toxicity of Organic Compounds.
    Tinkov O; Polishchuk P; Matveieva M; Grigorev V; Grigoreva L; Porozov Y
    Mol Inform; 2021 Sep; 40(9):e2000209. PubMed ID: 33029954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial least squares modelling of the acute toxicity of aliphatic compounds to Tetrahymena pyriformis.
    Netzeva TI; Schultz TW; Aptula AO; Cronin MT
    SAR QSAR Environ Res; 2003 Aug; 14(4):265-83. PubMed ID: 14506870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning-based models to predict modes of toxic action of phenols to Tetrahymena pyriformis.
    Castillo-Garit JA; Casañola-Martin GM; Barigye SJ; Pham-The H; Torrens F; Torreblanca A
    SAR QSAR Environ Res; 2017 Sep; 28(9):735-747. PubMed ID: 29022372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A
    J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a computational model for Michael addition reactivity in the prediction of toxicity to Tetrahymena pyriformis.
    Schwöbel JA; Madden JC; Cronin MT
    Chemosphere; 2011 Oct; 85(6):1066-74. PubMed ID: 21890172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis.
    Zhu H; Tropsha A; Fourches D; Varnek A; Papa E; Gramatica P; Oberg T; Dao P; Cherkasov A; Tetko IV
    J Chem Inf Model; 2008 Apr; 48(4):766-84. PubMed ID: 18311912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks.
    Kahn I; Sild S; Maran U
    J Chem Inf Model; 2007; 47(6):2271-9. PubMed ID: 17985864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches.
    Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T
    Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-toxicity relationships for aliphatic chemicals evaluated with Tetrahymena pyriformis.
    Schultz TW; Cronin MT; Netzeva TI; Aptula AO
    Chem Res Toxicol; 2002 Dec; 15(12):1602-9. PubMed ID: 12482243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches.
    Singh KP; Gupta S
    Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSTR with extended topochemical atom (ETA) indices. 12. QSAR for the toxicity of diverse aromatic compounds to Tetrahymena pyriformis using chemometric tools.
    Roy K; Ghosh G
    Chemosphere; 2009 Nov; 77(7):999-1009. PubMed ID: 19709717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of atomic compressibility and its application in QSAR domain for toxicological property prediction.
    Tandon H; Chakraborty T; Suhag V
    J Mol Model; 2019 Sep; 25(10):303. PubMed ID: 31493097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods.
    Ai H; Wu X; Zhang L; Qi M; Zhao Y; Zhao Q; Zhao J; Liu H
    Ecotoxicol Environ Saf; 2019 Sep; 179():71-78. PubMed ID: 31026752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.