These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Chlorogenic acid, caffeic acid and luteolin from dandelion as urease inhibitors: insights into the molecular interactions and inhibition mechanism. Li Y; Zou H; Sun-Waterhouse D; Chen Y J Sci Food Agric; 2024 Oct; 104(13):8079-8088. PubMed ID: 38877786 [TBL] [Abstract][Full Text] [Related]
4. In-silico Designing, ADMET Analysis, Synthesis and Biological Evaluation of Novel Derivatives of Diosmin Against Urease Protein and Helicobacter pylori Bacterium. Kataria R; Khatkar A Curr Top Med Chem; 2019; 19(29):2658-2675. PubMed ID: 31724503 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, Antioxidant and In-Silico Studies of Potent Urease Inhibitors: N-(4-{[(4-Methoxyphenethyl)-(substituted)amino]sulfonyl}phenyl)acetamides. Abbasi MA; Raza H; Rehman AU; Siddiqui SZ; Nazir M; Mumtaz A; Shah SAA; Seo SY; Hassan M Drug Res (Stuttg); 2019 Feb; 69(2):111-120. PubMed ID: 30086567 [TBL] [Abstract][Full Text] [Related]
6. An in silico molecular docking and simulation study to identify potential anticancer phytochemicals targeting the RAS signaling pathway. Azmal M; Paul JK; Prima FS; Talukder OF; Ghosh A PLoS One; 2024; 19(9):e0310637. PubMed ID: 39298437 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of biofilm formation, quorum sensing activity and molecular docking study of isolated 3, 5, 7-Trihydroxyflavone from Alstonia scholaris leaf against P.aeruginosa. Abinaya M; Gayathri M Bioorg Chem; 2019 Jun; 87():291-301. PubMed ID: 30913464 [TBL] [Abstract][Full Text] [Related]
8. Targeting Oral Cancer: In Silico Docking Studies of Phytochemicals on Oncogenic Molecular Markers. G P; Sukumaran G; E D; Ramani P Asian Pac J Cancer Prev; 2024 Jun; 25(6):2069-2075. PubMed ID: 38918669 [TBL] [Abstract][Full Text] [Related]
9. Isolation, characterization, and in silico, in vitro and in vivo antiulcer studies of isoimperatorin crystallized from Ostericum koreanum. Raza H; Abbas Q; Hassan M; Eo SH; Ashraf Z; Kim D; Phull AR; Kim SJ; Kang SK; Seo SY Pharm Biol; 2017 Dec; 55(1):218-226. PubMed ID: 27927061 [TBL] [Abstract][Full Text] [Related]
10. Physicochemical properties and antioxidant activities of luteolin-phospholipid complex. Xu K; Liu B; Ma Y; Du J; Li G; Gao H; Zhang Y; Ning Z Molecules; 2009 Sep; 14(9):3486-93. PubMed ID: 19783938 [TBL] [Abstract][Full Text] [Related]
11. Contribution of Resveratrol in the Development of Novel Urease Inhibitors: Synthesis, Biological Evaluation and Molecular Docking Studies. Kataria R; Khatkar A Comb Chem High Throughput Screen; 2019; 22(4):245-255. PubMed ID: 30968774 [TBL] [Abstract][Full Text] [Related]
12. Molecular docking and inhibition studies on the interactions of Bacopa monnieri's potent phytochemicals against pathogenic Staphylococcus aureus. Emran TB; Rahman MA; Uddin MM; Dash R; Hossen MF; Mohiuddin M; Alam MR Daru; 2015 Apr; 23(1):26. PubMed ID: 25884228 [TBL] [Abstract][Full Text] [Related]
13. α-Glucosidase inhibition by luteolin: kinetics, interaction and molecular docking. Yan J; Zhang G; Pan J; Wang Y Int J Biol Macromol; 2014 Mar; 64():213-23. PubMed ID: 24333230 [TBL] [Abstract][Full Text] [Related]
14. Pharmacological evaluation of Alstonia scholaris: anti-inflammatory and analgesic effects. Shang JH; Cai XH; Feng T; Zhao YL; Wang JK; Zhang LY; Yan M; Luo XD J Ethnopharmacol; 2010 May; 129(2):174-81. PubMed ID: 20219658 [TBL] [Abstract][Full Text] [Related]
15. Alstonia scholaris (L.) R. Br. and Alstonia macrophylla Wall. ex G. Don: A comparative review on traditional uses, phytochemistry and pharmacology. Khyade MS; Kasote DM; Vaikos NP J Ethnopharmacol; 2014 Apr; 153(1):1-18. PubMed ID: 24486598 [TBL] [Abstract][Full Text] [Related]
16. In-silico design, synthesis, ADMET studies and biological evaluation of novel derivatives of Chlorogenic acid against Urease protein and Kataria R; Khatkar A BMC Chem; 2019 Dec; 13(1):41. PubMed ID: 31384789 [TBL] [Abstract][Full Text] [Related]
17. Carbonic Anhydrase and Urease Inhibitory Potential of Various Plant Phenolics Using in vitro and in silico Methods. Rauf A; Raza M; Saleem M; Ozgen U; Karaoglan ES; Renda G; Palaska E; Orhan IE Chem Biodivers; 2017 Jun; 14(6):. PubMed ID: 28207990 [TBL] [Abstract][Full Text] [Related]
18. The inhibition mechanism of luteolin on peroxidase based on multispectroscopic techniques. Li F; Fu Y; Yang H; Tang Y Int J Biol Macromol; 2021 Jan; 166():1072-1081. PubMed ID: 33157143 [TBL] [Abstract][Full Text] [Related]
19. Deciphering the Interactions of Bioactive Compounds in Selected Traditional Medicinal Plants against Alzheimer's Diseases via Pharmacophore Modeling, Auto-QSAR, and Molecular Docking Approaches. Ojo OA; Ojo AB; Okolie C; Nwakama MC; Iyobhebhe M; Evbuomwan IO; Nwonuma CO; Maimako RF; Adegboyega AE; Taiwo OA; Alsharif KF; Batiha GE Molecules; 2021 Apr; 26(7):. PubMed ID: 33915968 [TBL] [Abstract][Full Text] [Related]
20. Potent α-amylase inhibitors and radical (DPPH and ABTS) scavengers based on benzofuran-2-yl(phenyl)methanone derivatives: Syntheses, in vitro, kinetics, and in silico studies. Ali I; Rafique R; Khan KM; Chigurupati S; Ji X; Wadood A; Rehman AU; Salar U; Iqbal MS; Taha M; Perveen S; Ali B Bioorg Chem; 2020 Nov; 104():104238. PubMed ID: 32911195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]