BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35228388)

  • 1. Synthesis of Visible-Light-Activated Hypervalent Iodine and Photo-oxidation under Visible Light Irradiation via a Direct S
    Nakajima M; Nagasawa S; Matsumoto K; Matsuda Y; Nemoto T
    Chem Pharm Bull (Tokyo); 2022; 70(3):235-239. PubMed ID: 35228388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Direct S
    Nakajima M; Nagasawa S; Matsumoto K; Kuribara T; Muranaka A; Uchiyama M; Nemoto T
    Angew Chem Int Ed Engl; 2020 Apr; 59(17):6847-6852. PubMed ID: 32027078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible Light-Induced Direct S
    Matsumoto K; Nakajima M; Nemoto T
    J Org Chem; 2020 Sep; 85(18):11802-11811. PubMed ID: 32814421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct S
    Nakajima M; Nagasawa S; Yamazaki K; Yazawa T; Yoneyama H; Kotaka Y; Nemoto T
    Org Lett; 2024 Apr; 26(15):3289-3293. PubMed ID: 38568017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibration-mediated long-wavelength photolysis of electronegative bonds beyond S
    Araujo Dias AJ; Muranaka A; Uchiyama M; Tanaka K; Nagashima Y
    Commun Chem; 2024 Jun; 7(1):126. PubMed ID: 38834838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct cyanation of heteroaromatic compounds mediated by hypervalent iodine(III) reagents: In situ generation of PhI(III)-CN species and their cyano transfer.
    Dohi T; Morimoto K; Takenaga N; Goto A; Maruyama A; Kiyono Y; Tohma H; Kita Y
    J Org Chem; 2007 Jan; 72(1):109-16. PubMed ID: 17194088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling and catalytic approaches for the development of a rare-metal-free synthetic method using hypervalent iodine reagent.
    Dohi T
    Chem Pharm Bull (Tokyo); 2010 Feb; 58(2):135-42. PubMed ID: 20118569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical studies of H2O oxidation by neutral Ti2O4,5 clusters under visible light irradiation.
    Yin S; Bernstein ER
    Phys Chem Chem Phys; 2014 Jul; 16(27):13900-8. PubMed ID: 24898817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Hypervalent Iodine(III) Reagents and Photoredox Catalysis Enable Decarboxylative Ynonylation under Mild Conditions.
    Huang H; Zhang G; Chen Y
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7872-6. PubMed ID: 26014919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric Direct/Stepwise Dearomatization Reactions Involving Hypervalent Iodine Reagents.
    Kumar R; Singh FV; Takenaga N; Dohi T
    Chem Asian J; 2022 Feb; 17(4):e202101115. PubMed ID: 34817125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-free C-H bond activation of branched aldehydes with a hypervalent iodine(III) catalyst under visible-light photolysis: successful trapping with electron-deficient olefins.
    Moteki SA; Usui A; Selvakumar S; Zhang T; Maruoka K
    Angew Chem Int Ed Engl; 2014 Oct; 53(41):11060-4. PubMed ID: 25155904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of Au/Au(3+)-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment.
    Li XZ; Li FB
    Environ Sci Technol; 2001 Jun; 35(11):2381-7. PubMed ID: 11414049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible-Light, Iodine-Promoted Formation of
    Hopkins MD; Brandeburg ZC; Hanson AJ; Lamar AA
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30042326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalyst-free hypervalent iodine reagent catalyzed decarboxylative acylarylation of acrylamides with α-oxocarboxylic acids driven by visible-light irradiation.
    Ji W; Tan H; Wang M; Li P; Wang L
    Chem Commun (Camb); 2016 Jan; 52(7):1462-5. PubMed ID: 26649450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypervalent-Iodine(III)-Mediated Oxidative Methodology for the Synthesis of Fused Triazoles.
    Kamal R; Kumar V; Kumar R
    Chem Asian J; 2016 Jul; 11(14):1988-2000. PubMed ID: 27123538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. μ-Oxo-Hypervalent-Iodine-Catalyzed Oxidative C-H Amination for Synthesis of Benzolactam Derivatives.
    Sasa H; Mori K; Kikushima K; Kita Y; Dohi T
    Chem Pharm Bull (Tokyo); 2022 Feb; 70(2):106-110. PubMed ID: 34897163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypervalent iodine reagents enable chemoselective deboronative/decarboxylative alkenylation by photoredox catalysis.
    Huang H; Jia K; Chen Y
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1881-4. PubMed ID: 25504966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Synthetic Applications of Hypervalent Iodine Compounds.
    Yoshimura A; Zhdankin VV
    Chem Rev; 2016 Mar; 116(5):3328-435. PubMed ID: 26861673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Free-Visible Light C-H Alkylation of Heteroaromatics via Hypervalent Iodine-Promoted Decarboxylation.
    Genovino J; Lian Y; Zhang Y; Hope TO; Juneau A; Gagné Y; Ingle G; Frenette M
    Org Lett; 2018 Jun; 20(11):3229-3232. PubMed ID: 29767991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced photo-reactivity of polyanthracene in the VIS region.
    Bruzon DA; De Jesus AP; Bautista CD; Martinez IS; Paderes MC; Tapang GA
    PLoS One; 2022; 17(7):e0271280. PubMed ID: 35802661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.