These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 35228483)
1. [A Study of 3D-NPS Analysis in CT Images Based on the Central Cross-section Theorem]. Narita A; Ohkubo M; Fukaya T; Sakai K; Noto Y Nihon Hoshasen Gijutsu Gakkai Zasshi; 2022 Apr; 78(4):342-347. PubMed ID: 35228483 [TBL] [Abstract][Full Text] [Related]
2. [A Study of Longitudinal NPS Measurement in CT Images Based on the Central Cross-section Theorem]. Narita A; Ohkubo M; Ohsugi Y; Sakai K; Fukaya T; Noto Y Nihon Hoshasen Gijutsu Gakkai Zasshi; 2022 Jul; 78(7):719-725. PubMed ID: 35665687 [TBL] [Abstract][Full Text] [Related]
3. [Central Slice Theorem-based Relationship between 1D-NPS Obtained by the Slit Method and 2D-NPS for CT Images]. Narita A; Ohkubo M; Fukaya T; Noto Y Nihon Hoshasen Gijutsu Gakkai Zasshi; 2021; 77(8):828-832. PubMed ID: 34421071 [TBL] [Abstract][Full Text] [Related]
4. Technical Note: Scanner dependence of adaptive statistical iterative reconstruction with 3D noise power spectrum central frequency and noise magnitude ratios. Hasegawa A; Ishihara T; Allan Thomas M; Pan T Med Phys; 2021 Sep; 48(9):4993-5003. PubMed ID: 34287936 [TBL] [Abstract][Full Text] [Related]
5. A data-efficient method for local noise power spectrum (NPS) estimation in FDK-reconstructed 3D cone-beam CT. Zeng R; Torkaman M; Ning H; Zhuge Y; Miller R; Myers KJ Med Phys; 2019 Apr; 46(4):1634-1647. PubMed ID: 30723944 [TBL] [Abstract][Full Text] [Related]
6. Adaptive nonlocal means filtering based on local noise level for CT denoising. Li Z; Yu L; Trzasko JD; Lake DS; Blezek DJ; Fletcher JG; McCollough CH; Manduca A Med Phys; 2014 Jan; 41(1):011908. PubMed ID: 24387516 [TBL] [Abstract][Full Text] [Related]
7. Method to estimate fan-beam CT noise power spectrum using two basis functions with a limited number of noise realizations. Jang H; Baek J Med Phys; 2022 Mar; 49(3):1619-1634. PubMed ID: 35028944 [TBL] [Abstract][Full Text] [Related]
8. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: experimental assessment of noise performance. Li K; Tang J; Chen GH Med Phys; 2014 Apr; 41(4):041906. PubMed ID: 24694137 [TBL] [Abstract][Full Text] [Related]
9. A pitfall of using the circular-edge technique with image averaging for spatial resolution measurement in iteratively reconstructed CT images. Narita A; Ohkubo M J Appl Clin Med Phys; 2020 Feb; 21(2):144-151. PubMed ID: 31957969 [TBL] [Abstract][Full Text] [Related]
10. Quantification and homogenization of image noise between two CT scanner models. Einstein SA; Rong XJ; Jensen CT; Liu X J Appl Clin Med Phys; 2020 Jan; 21(1):174-178. PubMed ID: 31859454 [TBL] [Abstract][Full Text] [Related]
11. Practical considerations for noise power spectra estimation for clinical CT scanners. Dolly S; Chen HC; Anastasio M; Mutic S; Li H J Appl Clin Med Phys; 2016 May; 17(3):392-407. PubMed ID: 27167257 [TBL] [Abstract][Full Text] [Related]
12. Noise reduction profile: A new method for evaluation of noise reduction techniques in CT. Hasegawa A; Ishihara T; Thomas MA; Pan T Med Phys; 2022 Jan; 49(1):186-200. PubMed ID: 34837717 [TBL] [Abstract][Full Text] [Related]
13. [Novel method of noise power spectrum measurement for computed tomography images with adaptive iterative reconstruction method]. Nishimaru E; Ichikawa K; Hara T; Terakawa S; Yokomachi K; Fujioka C; Kiguchi M; Ishifuro M Nihon Hoshasen Gijutsu Gakkai Zasshi; 2012; 68(12):1637-43. PubMed ID: 23257594 [TBL] [Abstract][Full Text] [Related]
14. [Evaluation of image quality of multiplanar reconstruction images: Effect of Z-increment of original axial images]. Kudomi S; Ueda Y; Ueda K; Ichikawa K Nihon Hoshasen Gijutsu Gakkai Zasshi; 2010 Jun; 66(6):690-1. PubMed ID: 20702989 [TBL] [Abstract][Full Text] [Related]
15. A novel extension of the parallel-beam projection-slice theorem to divergent fan-beam and cone-beam projections. Chen GH; Leng S; Mistretta CA Med Phys; 2005 Mar; 32(3):654-65. PubMed ID: 15839337 [TBL] [Abstract][Full Text] [Related]
16. Quantitation of clinical feedback on image quality differences between two CT scanner models. Bache ST; Stauduhar PJ; Liu X; Loyer EM; John RX J Appl Clin Med Phys; 2017 Mar; 18(2):163-169. PubMed ID: 28300384 [TBL] [Abstract][Full Text] [Related]
17. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions. Brunner CC; Stern SH; Minniti R; Parry MI; Skopec M; Chakrabarti K Med Phys; 2013 Aug; 40(8):081917. PubMed ID: 23927331 [TBL] [Abstract][Full Text] [Related]
18. Image reconstruction and image quality evaluation for a dual source CT scanner. Flohr TG; Bruder H; Stierstorfer K; Petersilka M; Schmidt B; McCollough CH Med Phys; 2008 Dec; 35(12):5882-97. PubMed ID: 19175144 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics. Higaki T; Nakamura Y; Zhou J; Yu Z; Nemoto T; Tatsugami F; Awai K Acad Radiol; 2020 Jan; 27(1):82-87. PubMed ID: 31818389 [TBL] [Abstract][Full Text] [Related]
20. Slice NEQ and system DQE to assess CT imaging performance. Monnin P; Viry A; Verdun FR; Racine D Phys Med Biol; 2020 Jun; 65(10):105009. PubMed ID: 32182590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]