These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 3522852)

  • 1. [Studies on experimental chemotherapy of dermatomycosis and candidiasis. X. Mechanism of the antifungal action of propiolic acid (beta-naphthyl)methyl ester].
    Maeda T; Matui S; Hayashi M; Yamazoe H; Hayashi E
    Yakugaku Zasshi; 1986 Mar; 106(3):248-56. PubMed ID: 3522852
    [No Abstract]   [Full Text] [Related]  

  • 2. Synergism of voriconazole and terbinafine against Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis.
    Weig M; Müller FM
    Antimicrob Agents Chemother; 2001 Mar; 45(3):966-8. PubMed ID: 11181393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Experimental chemotherapy of dermatomycosis (8). Therapeutic effect of propiolic acid (beta-naphthyl)methyl ester on experimental trichophytosis in animals and its general pharmacological actions].
    Yamazoe H; Matsui S; Okada T; Hayashi M; Hayashi E
    Yakugaku Zasshi; 1983 Apr; 103(4):455-65. PubMed ID: 6631676
    [No Abstract]   [Full Text] [Related]  

  • 4. Tea polyphenol epigallocatechin-3-gallate inhibits ergosterol synthesis by disturbing folic acid metabolism in Candida albicans.
    Navarro-Martínez MD; García-Cánovas F; Rodríguez-López JN
    J Antimicrob Chemother; 2006 Jun; 57(6):1083-92. PubMed ID: 16585130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal agents. III. Naphthyl and thienyl derivatives of 1H-imidazol-1-yl-4-phenyl-1H-pyrrol-3-ylmethane.
    Massa S; Di Santo R; Costi R; Simonetti G; Retico A; Apuzzo G; Artico M
    Farmaco; 1993 Jun; 48(6):725-36. PubMed ID: 8373500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide expression profiling of the response to terbinafine in Candida albicans using a cDNA microarray analysis.
    Zeng YB; Qian YS; Ma L; Gu HN
    Chin Med J (Engl); 2007 May; 120(9):807-13. PubMed ID: 17531123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyene resistant Candida albicans: a proposed nutritional influence.
    Hammond SM; Kliger BN
    Microbios; 1974 Apr; 10(38):97-101. PubMed ID: 4604922
    [No Abstract]   [Full Text] [Related]  

  • 8. Azole resistance in Candida albicans.
    Ryley JF; Wilson RG; Barrett-Bee KJ
    Sabouraudia; 1984; 22(1):53-63. PubMed ID: 6322363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilms of Candida albicans and their associated resistance to antifungal agents.
    Ramage G; Wickes BL; Lopez-Ribot JL
    Am Clin Lab; 2001 Aug; 20(7):42-4. PubMed ID: 11570274
    [No Abstract]   [Full Text] [Related]  

  • 10. Rep1p negatively regulating MDR1 efflux pump involved in drug resistance in Candida albicans.
    Chen CG; Yang YL; Tseng KY; Shih HI; Liou CH; Lin CC; Lo HJ
    Fungal Genet Biol; 2009 Sep; 46(9):714-20. PubMed ID: 19527793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Interactions between antimycetic imidazole derivatives and lipids, waxes and triterpenes (author's transl)].
    Högl F; Raab W
    Mykosen; 1980 Dec; 23(12):669-81. PubMed ID: 7012611
    [No Abstract]   [Full Text] [Related]  

  • 12. In vitro susceptibility and resistance of Candida spp. to hamycin.
    Athar MA
    Sabouraudia; 1971 Nov; 9(3):256-62. PubMed ID: 4944203
    [No Abstract]   [Full Text] [Related]  

  • 13. Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans.
    Sigle HC; Thewes S; Niewerth M; Korting HC; Schäfer-Korting M; Hube B
    J Antimicrob Chemother; 2005 May; 55(5):663-73. PubMed ID: 15790671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the cellular composition of Candida albicans resistant to miconazole.
    Sharma S; Khuller GK
    Indian J Biochem Biophys; 1996 Oct; 33(5):420-4. PubMed ID: 9029825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New evidence that Candida albicans possesses additional ATP-binding cassette MDR-like genes: implications for antifungal azole resistance.
    Walsh TJ; Kasai M; Francesconi A; Landsman D; Chanock SJ
    J Med Vet Mycol; 1997; 35(2):133-7. PubMed ID: 9147273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Correlation between resistance testing and typing of Candida albicans--isolates from AIDS patients and chronic recurrent oral candidiasis].
    Ruhnke M; Tennagen I; Engelmann E
    Mycoses; 1994; 37 Suppl 1():60-3. PubMed ID: 7854368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Antifungal agent resistance of yeasts of clinical significance].
    Odds FC
    Rev Clin Esp; 1995 Oct; 195 Suppl 3():56-7. PubMed ID: 9441307
    [No Abstract]   [Full Text] [Related]  

  • 18. [Antifungal resistance in opportunistic pathogenic fungi (II). Imidazoles and triazoles].
    Martínez-Suárez JV; Rodríguez-Tudela JL
    Enferm Infecc Microbiol Clin; 1996 Oct; 14(8):490-8. PubMed ID: 9011208
    [No Abstract]   [Full Text] [Related]  

  • 19. Respiratory deficiency enhances the sensitivity of the pathogenic fungus Candida to photodynamic treatment.
    Chabrier-Roselló Y; Foster TH; Mitra S; Haidaris CG
    Photochem Photobiol; 2008; 84(5):1141-8. PubMed ID: 18248505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of ATP in Candida albicans by imidazole and derivative antifungal agents.
    Odds FC; Cheesman SL; Abbott AB
    Sabouraudia; 1985 Dec; 23(6):415-24. PubMed ID: 3913012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.