These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35228533)

  • 1. Wide-field mid-infrared single-photon upconversion imaging.
    Huang K; Fang J; Yan M; Wu E; Zeng H
    Nat Commun; 2022 Feb; 13(1):1077. PubMed ID: 35228533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mid-infrared single-photon 3D imaging.
    Fang J; Huang K; Wu E; Yan M; Zeng H
    Light Sci Appl; 2023 Jun; 12(1):144. PubMed ID: 37296123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mid-infrared single-pixel imaging at the single-photon level.
    Wang Y; Huang K; Fang J; Yan M; Wu E; Zeng H
    Nat Commun; 2023 Feb; 14(1):1073. PubMed ID: 36841860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wide-field mid-infrared hyperspectral imaging beyond video rate.
    Fang J; Huang K; Qin R; Liang Y; Wu E; Yan M; Zeng H
    Nat Commun; 2024 Feb; 15(1):1811. PubMed ID: 38418468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wide-Field Mid-Infrared Hyperspectral Imaging by Snapshot Phase Contrast Measurement of Optothermal Excitation.
    Yuan T; Pleitez MA; Gasparin F; Ntziachristos V
    Anal Chem; 2021 Nov; 93(46):15323-15330. PubMed ID: 34766751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography.
    Habte F; Foudray AM; Olcott PD; Levin CS
    Phys Med Biol; 2007 Jul; 52(13):3753-72. PubMed ID: 17664575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed scanless entire bandwidth mid-infrared chemical imaging.
    Zhao Y; Kusama S; Furutani Y; Huang WH; Luo CW; Fuji T
    Nat Commun; 2023 Jul; 14(1):3929. PubMed ID: 37402722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upconversion-based mid-infrared spectrometer using intra-cavity LiNbO
    Friis SMM; Høgstedt L
    Opt Lett; 2019 Sep; 44(17):4231-4234. PubMed ID: 31465369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared chemical imaging through non-degenerate two-photon absorption in silicon-based cameras.
    Knez D; Hanninen AM; Prince RC; Potma EO; Fishman DA
    Light Sci Appl; 2020; 9():125. PubMed ID: 32704358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit.
    Li X; Li Y; Zhou Y; Wu J; Zhao Z; Fan J; Deng F; Wu Z; Xiao G; He J; Zhang Y; Zhang G; Hu X; Chen X; Zhang Y; Qiao H; Xie H; Li Y; Wang H; Fang L; Dai Q
    Nat Biotechnol; 2023 Feb; 41(2):282-292. PubMed ID: 36163547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the detectivity of an upconversion single-photon detector by spatial filtering of upconverted parametric fluorescence.
    Meng L; Høgstedt L; Tidemand-Lichtenberg P; Pedersen C; Rodrigo PJ
    Opt Express; 2018 Sep; 26(19):24712-24722. PubMed ID: 30469584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications.
    Xu J; Wei W; Song S; Qi X; Wang RK
    Biomed Opt Express; 2016 May; 7(5):1905-19. PubMed ID: 27231630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mid-infrared supercontinuum-based upconversion detection for trace gas sensing.
    Jahromi KE; Pan Q; Høgstedt L; Friis SMM; Khodabakhsh A; Moselund PM; Harren FJM
    Opt Express; 2019 Aug; 27(17):24469-24480. PubMed ID: 31510335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mid-infrared coincidence measurements on twin photons at room temperature.
    Mancinelli M; Trenti A; Piccione S; Fontana G; Dam JS; Tidemand-Lichtenberg P; Pedersen C; Pavesi L
    Nat Commun; 2017 May; 8():15184. PubMed ID: 28504244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terahertz detection by upconversion to the near-infrared using picosecond pulses.
    Pfeiffer T; Kutas M; Haase B; Molter D; von Freymann G
    Opt Express; 2020 Sep; 28(20):29419-29429. PubMed ID: 33114842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting the potential of commercial objectives to extend the field of view of two-photon microscopy by adaptive optics.
    Yao J; Gao Y; Yin Y; Lai P; Ye S; Zheng W
    Opt Lett; 2022 Feb; 47(4):989-992. PubMed ID: 35167576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mid-infrared single-photon upconversion spectroscopy enabled by nonlocal wavelength-to-time mapping.
    Cai Y; Chen Y; Dorfman K; Xin X; Wang X; Huang K; Wu E
    Sci Adv; 2024 Apr; 10(16):eadl3503. PubMed ID: 38640245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications.
    Padmanabhan P; Zhang C; Charbon E
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time GPU-accelerated processing and volumetric display for wide-field laser-scanning optical-resolution photoacoustic microscopy.
    Kang H; Lee SW; Lee ES; Kim SH; Lee TG
    Biomed Opt Express; 2015 Dec; 6(12):4650-60. PubMed ID: 26713184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion.
    Nienhaus L; Wu M; Bulović V; Baldo MA; Bawendi MG
    Dalton Trans; 2018 Jul; 47(26):8509-8516. PubMed ID: 29493697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.