BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35228607)

  • 1. Morphological variation in paediatric lower limb bones.
    Carman L; Besier TF; Choisne J
    Sci Rep; 2022 Feb; 12(1):3251. PubMed ID: 35228607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of predictive statistical shape models for paediatric lower limb bones.
    Shi B; Barzan M; Nasseri A; Carty CP; Lloyd DG; Davico G; Maharaj JN; Diamond LE; Saxby DJ
    Comput Methods Programs Biomed; 2022 Oct; 225():107002. PubMed ID: 35882107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An articulated shape model to predict paediatric lower limb bone geometry using sparse landmarks.
    Carman L; Besier TF; Rooks NB; Choisne J
    J Biomech; 2024 Jun; 172():112211. PubMed ID: 38955093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Best methods and data to reconstruct paediatric lower limb bones for musculoskeletal modelling.
    Davico G; Pizzolato C; Killen BA; Barzan M; Suwarganda EK; Lloyd DG; Carty CP
    Biomech Model Mechanobiol; 2020 Aug; 19(4):1225-1238. PubMed ID: 31691037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometric variation of the human tibia-fibula: a public dataset of tibia-fibula surface meshes and statistical shape model.
    Keast M; Bonacci J; Fox A
    PeerJ; 2023; 11():e14708. PubMed ID: 36811007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.
    Nolte D; Tsang CK; Zhang KY; Ding Z; Kedgley AE; Bull AMJ
    J Biomech; 2016 Oct; 49(14):3576-3581. PubMed ID: 27653375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full-length radiograph based automatic musculoskeletal modeling using convolutional neural network.
    Wang J; Li S; Sun Z; Lao Q; Shen B; Li K; Nie Y
    J Biomech; 2024 Mar; 166():112046. PubMed ID: 38467079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging.
    Barratt DC; Chan CS; Edwards PJ; Penney GP; Slomczykowski M; Carter TJ; Hawkes DJ
    Med Image Anal; 2008 Jun; 12(3):358-74. PubMed ID: 18313973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of the lower limb bones from digitised anatomical landmarks using statistical shape modelling.
    Nolte D; Ko ST; Bull AMJ; Kedgley AE
    Gait Posture; 2020 Mar; 77():269-275. PubMed ID: 32092603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional analysis of shape variations and symmetry of the fibula, tibia, calcaneus and talus.
    Tümer N; Arbabi V; Gielis WP; de Jong PA; Weinans H; Tuijthof GJM; Zadpoor AA
    J Anat; 2019 Jan; 234(1):132-144. PubMed ID: 30393864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimal medical imaging can accurately reconstruct geometric bone models for musculoskeletal models.
    Suwarganda EK; Diamond LE; Lloyd DG; Besier TF; Zhang J; Killen BA; Savage TN; Saxby DJ
    PLoS One; 2019; 14(2):e0205628. PubMed ID: 30742643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology of the pelvis and hind limb of the red panda (Ailurus fulgens) evidenced by gross osteology, radiography and computed tomography.
    Makungu M; du Plessis WM; Groenewald HB; Barrows M; Koeppel KN
    Anat Histol Embryol; 2015 Dec; 44(6):410-21. PubMed ID: 25308447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pelvis and femur shape prediction using principal component analysis for body model on seat comfort assessment. Impact on the prediction of the used palpable anatomical landmarks as predictors.
    Savonnet L; Duprey S; Van Sint Jan S; Wang X
    PLoS One; 2019; 14(8):e0221201. PubMed ID: 31454359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the hip joint centre in children: New regression equations, linear scaling, and statistical shape modelling.
    Carman L; Besier TF; Choisne J
    J Biomech; 2022 Sep; 142():111265. PubMed ID: 36027636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Tibia-Fibula Geometry and Density From Anatomical Landmarks Via Statistical Appearance Model: Influence of Errors on Finite Element-Calculated Bone Strain.
    Bruce OL; Tu J; Edwards WB
    J Biomech Eng; 2024 Sep; 146(9):. PubMed ID: 38558117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex disparities in tibia-fibula geometry and density are associated with elevated bone strain in females: A cross-validation study.
    Bruce OL; Edwards WB
    Bone; 2023 Aug; 173():116803. PubMed ID: 37201675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of cross-sectional geometry, curvature, and limb posture in maintaining equal safety factors: a computed tomography study.
    Brassey CA; Kitchener AC; Withers PJ; Manning PL; Sellers WI
    Anat Rec (Hoboken); 2013 Mar; 296(3):395-413. PubMed ID: 23382038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A statistical shape model of the tibia-fibula complex: sexual dimorphism and effects of age on reconstruction accuracy from anatomical landmarks.
    Bruce OL; Baggaley M; Welte L; Rainbow MJ; Edwards WB
    Comput Methods Biomech Biomed Engin; 2022 Jun; 25(8):875-886. PubMed ID: 34730046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomy, histology and elemental profile of long bones and ribs of the Asian elephant (Elephas maximus).
    Nganvongpanit K; Siengdee P; Buddhachat K; Brown JL; Klinhom S; Pitakarnnop T; Angkawanish T; Thitaram C
    Anat Sci Int; 2017 Sep; 92(4):554-568. PubMed ID: 27491825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-D lower extremity bone morphology in ambulant children with cerebral palsy and its relation to gait.
    Bailly R; Lempereur M; Pons C; Houx L; Thepaut M; Borotikar B; Gross R; Brochard S
    Ann Phys Rehabil Med; 2021 May; 64(3):101254. PubMed ID: 30978527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.