BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

973 related articles for article (PubMed ID: 35228996)

  • 1. Periosteum and development of the tissue-engineered periosteum for guided bone regeneration.
    Zhang W; Wang N; Yang M; Sun T; Zhang J; Zhao Y; Huo N; Li Z
    J Orthop Translat; 2022 Mar; 33():41-54. PubMed ID: 35228996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration.
    Ju Y; Hu Y; Yang P; Xie X; Fang B
    Mater Today Bio; 2023 Feb; 18():100522. PubMed ID: 36593913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat.
    Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X
    Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in biomaterials for long-bone segmental defect reconstruction: A narrative overview.
    Zhang M; Matinlinna JP; Tsoi JKH; Liu W; Cui X; Lu WW; Pan H
    J Orthop Translat; 2020 May; 22():26-33. PubMed ID: 32440496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired osteogenesis of T1DM bone marrow-derived stromal cells and periosteum-derived cells and their differential in-vitro responses to growth factor rescue.
    Filion TM; Skelly JD; Huang H; Greiner DL; Ayers DC; Song J
    Stem Cell Res Ther; 2017 Mar; 8(1):65. PubMed ID: 28283030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field.
    Su X; Wang T; Guo S
    Regen Ther; 2021 Mar; 16():63-72. PubMed ID: 33598507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmed Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Inorganic Ion Composite Hydrogel as Artificial Periosteum.
    Xin T; Mao J; Liu L; Tang J; Wu L; Yu X; Gu Y; Cui W; Chen L
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):6840-6851. PubMed ID: 31999085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A platelet-rich plasma-based membrane as a periosteal substitute with enhanced osteogenic and angiogenic properties: a new concept for bone repair.
    El Backly RM; Zaky SH; Muraglia A; Tonachini L; Brun F; Canciani B; Chiapale D; Santolini F; Cancedda R; Mastrogiacomo M
    Tissue Eng Part A; 2013 Jan; 19(1-2):152-65. PubMed ID: 22849574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic periosteum-bone substitute composed of preosteoblast-derived matrix and hydrogel for large segmental bone defect repair.
    Yu Y; Wang Y; Zhang W; Wang H; Li J; Pan L; Han F; Li B
    Acta Biomater; 2020 Sep; 113():317-327. PubMed ID: 32574859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced bone tissue regeneration of a biomimetic cellular scaffold with co-cultured MSCs-derived osteogenic and angiogenic cells.
    Li L; Li J; Zou Q; Zuo Y; Cai B; Li Y
    Cell Prolif; 2019 Sep; 52(5):e12658. PubMed ID: 31297910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydopamine-Coated Poly(l-lactide) Nanofibers with Controlled Release of VEGF and BMP-2 as a Regenerative Periosteum.
    Sun H; Dong J; Wang Y; Shen S; Shi Y; Zhang L; Zhao J; Sun X; Jiang Q
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4883-4897. PubMed ID: 34472855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on a tissue-engineered bone using rhBMP-2 induced periosteal cells with a porous nano-hydroxyapatite/collagen/poly(L-lactic acid) scaffold.
    Zhang C; Hu YY; Cui FZ; Zhang SM; Ruan DK
    Biomed Mater; 2006 Jun; 1(2):56-62. PubMed ID: 18460757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of BMP-2 Enhances the Osteoblast Differentiation of Human Amnion Mesenchymal Stem Cells Seeded on Nano-Hydroxyapatite/Collagen/Poly(l-Lactide).
    Wu S; Xiao Z; Song J; Li M; Li W
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30044394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered periosteum-bone biomimetic bone graft enhances posterolateral spine fusion in a rabbit model.
    Fu TS; Wang YC; Chen CH; Chang CW; Lin TY; Wong CB; Chen DW; Su CY
    Spine J; 2019 Apr; 19(4):762-771. PubMed ID: 30266454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation.
    Raghavendran HR; Mohan S; Genasan K; Murali MR; Naveen SV; Talebian S; McKean R; Kamarul T
    Colloids Surf B Biointerfaces; 2016 Mar; 139():68-78. PubMed ID: 26700235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of biomimetic cell-sheet-engineered periosteum with a double cell sheet to repair calvarial defects of rats.
    Zhang J; Huang Y; Wang Y; Xu J; Huang T; Luo X
    J Orthop Translat; 2023 Jan; 38():1-11. PubMed ID: 36313975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscaled Bionic Periosteum Orchestrating the Osteogenic Microenvironment for Sequential Bone Regeneration.
    Li H; Wang H; Pan J; Li J; Zhang K; Duan W; Liang H; Chen K; Geng D; Shi Q; Yang H; Li B; Chen H
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):36823-36836. PubMed ID: 32706234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold.
    Kang Y; Ren L; Yang Y
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9622-33. PubMed ID: 24858072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.