These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35229595)

  • 1. Persistent Influence of Wildfire Emissions in the Western United States and Characteristics of Aged Biomass Burning Organic Aerosols under Clean Air Conditions.
    Farley R; Bernays N; Jaffe DA; Ketcherside D; Hu L; Zhou S; Collier S; Zhang Q
    Environ Sci Technol; 2022 Mar; 56(6):3645-3657. PubMed ID: 35229595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign.
    Collier S; Zhou S; Onasch TB; Jaffe DA; Kleinman L; Sedlacek AJ; Briggs NL; Hee J; Fortner E; Shilling JE; Worsnop D; Yokelson RJ; Parworth C; Ge X; Xu J; Butterfield Z; Chand D; Dubey MK; Pekour MS; Springston S; Zhang Q
    Environ Sci Technol; 2016 Aug; 50(16):8613-22. PubMed ID: 27398804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes.
    Palm BB; Peng Q; Fredrickson CD; Lee BH; Garofalo LA; Pothier MA; Kreidenweis SM; Farmer DK; Pokhrel RP; Shen Y; Murphy SM; Permar W; Hu L; Campos TL; Hall SR; Ullmann K; Zhang X; Flocke F; Fischer EV; Thornton JA
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29469-29477. PubMed ID: 33148807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal and spatial variation of organic tracers for biomass burning in PM1 aerosols from highly insolated urban areas.
    van Drooge BL; Fontal M; Bravo N; Fernández P; Fernández MA; Muñoz-Arnanz J; Jiménez B; Grimalt JO
    Environ Sci Pollut Res Int; 2014 Oct; 21(20):11661-70. PubMed ID: 24477336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on wildfire impacts on greenhouse gas emissions and regional air quality in South of Orléans, France.
    Xue C; Krysztofiak G; Ren Y; Cai M; Mercier P; Fur FL; Robin C; Grosselin B; Daële V; McGillen MR; Mu Y; Catoire V; Mellouki A
    J Environ Sci (China); 2024 Jan; 135():521-533. PubMed ID: 37778824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical characterization of submicron aerosol particles during wintertime in a northwest city of China using an Aerodyne aerosol mass spectrometry.
    Zhang X; Zhang Y; Sun J; Yu Y; Canonaco F; Prévôt ASH; Li G
    Environ Pollut; 2017 Mar; 222():567-582. PubMed ID: 28082133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical and physical properties of biomass burning aerosols and their CCN activity: A case study in Beijing, China.
    Wu Z; Zheng J; Wang Y; Shang D; Du Z; Zhang Y; Hu M
    Sci Total Environ; 2017 Feb; 579():1260-1268. PubMed ID: 27914642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range transported North American wildfire aerosols observed in marine boundary layer of eastern North Atlantic.
    Zheng G; Sedlacek AJ; Aiken AC; Feng Y; Watson TB; Raveh-Rubin S; Uin J; Lewis ER; Wang J
    Environ Int; 2020 Jun; 139():105680. PubMed ID: 32272293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wildfire plume ageing in the Photochemical Large Aerosol Chamber (PHOTO-LAC).
    Czech H; Popovicheva O; Chernov DG; Kozlov A; Schneider E; Shmargunov VP; Sueur M; Rüger CP; Afonso C; Uzhegov V; Kozlov VS; Panchenko MV; Zimmermann R
    Environ Sci Process Impacts; 2024 Jan; 26(1):35-55. PubMed ID: 37873726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia.
    He C; Miljevic B; Crilley LR; Surawski NC; Bartsch J; Salimi F; Uhde E; Schnelle-Kreis J; Orasche J; Ristovski Z; Ayoko GA; Zimmermann R; Morawska L
    Environ Int; 2016 May; 91():230-42. PubMed ID: 26989811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil.
    de Miranda RM; Lopes F; do Rosário NÉ; Yamasoe MA; Landulfo E; de Fatima Andrade M
    Environ Monit Assess; 2016 Dec; 189(1):6. PubMed ID: 27921226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sources of atmospheric black carbon and related carbonaceous components at Rishiri Island, Japan: The roles of Siberian wildfires and of crop residue burning in China.
    Zhu C; Kanaya Y; Yoshikawa-Inoue H; Irino T; Seki O; Tohjima Y
    Environ Pollut; 2019 Apr; 247():55-63. PubMed ID: 30654254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-range transport of CO and aerosols from Siberian biomass burning over northern Japan during 18-20 May 2016.
    Ngoc Trieu TT; Morino I; Uchino O; Tsutsumi Y; Izumi T; Sakai T; Shibata T; Ohyama H; Nagahama T
    Environ Pollut; 2023 Apr; 322():121129. PubMed ID: 36682620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Australian Black summer smoke signal on Antarctic aerosol collected between New Zealand and the Ross sea.
    Scalabrin E; Barbaro E; Pizzini S; Radaelli M; Feltracco M; Piazza R; Gambaro A; Capodaglio G
    Chemosphere; 2024 Jun; 357():142073. PubMed ID: 38641289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal variability in aerosol characteristics and its radiative properties over Patiala, northwestern part of India: Impact of agricultural biomass burning emissions.
    Sharma D; Srivastava AK; Ram K; Singh A; Singh D
    Environ Pollut; 2017 Dec; 231(Pt 1):1030-1041. PubMed ID: 28915541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter.
    Sandradewi J; Prévôt AS; Szidat S; Perron N; Alfarra MR; Lanz VA; Weingartner E; Baltensperger U
    Environ Sci Technol; 2008 May; 42(9):3316-23. PubMed ID: 18522112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model.
    Ballesteros-González K; Sullivan AP; Morales-Betancourt R
    Sci Total Environ; 2020 Oct; 739():139755. PubMed ID: 32758934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical characteristics and regional transport of submicron particulate matter at a suburban site near Lanzhou, China.
    Tang C; Zhang X; Tian P; Guan X; Lin Y; Pang S; Guo Q; Du T; Zhang Z; Zhang M; Xu J; Zhang L
    Environ Res; 2022 Sep; 212(Pt A):113179. PubMed ID: 35367426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical characteristics and sources of PM
    Li K; Chen L; White SJ; Zheng X; Lv B; Lin C; Bao Z; Wu X; Gao X; Ying F; Shen J; Azzi M; Cen K
    Environ Pollut; 2018 Jan; 232():42-54. PubMed ID: 28935404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size distribution of bioaerosols from biomass burning emissions: Characteristics of bacterial and fungal communities in submicron (PM
    Wei M; Xu C; Xu X; Zhu C; Li J; Lv G
    Ecotoxicol Environ Saf; 2019 Apr; 171():37-46. PubMed ID: 30594755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.