These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 35230075)

  • 1. Wireless Rehabilitation Training Sensor Arrays Made with Hot Screen-Imprinted Conductive Hydrogels with a Low Percolation Threshold.
    Yao B; Ye Z; Lou X; Yan Q; Han Z; Dong Y; Qu S; Wang Z
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12734-12747. PubMed ID: 35230075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly conductive and tough polyacrylamide/sodium alginate hydrogel with uniformly distributed polypyrrole nanospheres for wearable strain sensors.
    Zhang Y; Li S; Gao Z; Bi D; Qu N; Huang S; Zhao X; Li R
    Carbohydr Polym; 2023 Sep; 315():120953. PubMed ID: 37230609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A highly sensitive and anti-freezing conductive strain sensor based on polypyrrole/cellulose nanofiber crosslinked polyvinyl alcohol hydrogel for human motion detection.
    Liu X; Shi H; Song F; Yang W; Yang B; Ding D; Liu Z; Hui L; Zhang F
    Int J Biol Macromol; 2024 Feb; 257(Pt 2):128800. PubMed ID: 38101658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors.
    Han Y; Sun L; Wen C; Wang Z; Dai J; Shi L
    Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35147523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Engineering of a 3D Topological Network for Ultrasensitive Piezoresistive Pressure Sensors.
    Pan H; Xie G; Pang W; Wang S; Wang Y; Jiang Z; Du X; Tai H
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38805-38812. PubMed ID: 32805963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully physical crosslinked BSA-based conductive hydrogels with high strength and fast self-recovery for human motion and wireless electrocardiogram sensing.
    Xu J; Zhang H; Guo Z; Zhang C; Tan H; Gong G; Yu M; Xu L
    Int J Biol Macromol; 2023 Mar; 230():123195. PubMed ID: 36634804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced heterogeneous interface to construct intelligent conductive hydrogel gas sensor for individualized treatment of infected wounds.
    Wan L; Xu N; Wu X; Liu M; Liu Y; Zhao J; Zhang T; Zhao J; Zhou Y; Xie Q; Hu Y; Jiang X; Tang C; Quan Y; Shafique S; Tian Y; Zhang X; Zhang Y; Zhou K; Cao J; Jian J; Wang Y
    Int J Biol Macromol; 2024 Feb; 258(Pt 1):128520. PubMed ID: 38040150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using chitosan nanofibers to simultaneously improve the toughness and sensing performance of chitosan-based ionic conductive hydrogels.
    Wang X; Wang B; Liu W; Yu D; Song Z; Li G; Liu X; Wang H; Ge S
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129272. PubMed ID: 38211925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic-Assisted Transparent and Flexible Percolative Composite for Highly Sensitive Piezoresistive Sensor via Hot Embossing Technology.
    Wang S; Chen G; Niu S; Chen K; Gan T; Wang Z; Wang H; Du P; Leung CW; Qu S
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48331-48340. PubMed ID: 31774259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors.
    Han Y; Sun L; Wen C; Wang Z; Dai J; Shi L
    Biomed Mater; 2022 Feb; ():. PubMed ID: 35139506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor.
    Huang F; Wei W; Fan Q; Li L; Zhao M; Zhou Z
    J Colloid Interface Sci; 2022 Jun; 615():215-226. PubMed ID: 35131502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soft Bimodal Sensor Array Based on Conductive Hydrogel for Driving Status Monitoring.
    Dong W; Yao D; Yang L
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile preparation of stretchable and self-healable conductive hydrogels based on sodium alginate/polypyrrole nanofibers for use in flexible supercapacitor and strain sensors.
    Li Y; Liu X; Gong Q; Xia Z; Yang Y; Chen C; Qian C
    Int J Biol Macromol; 2021 Mar; 172():41-54. PubMed ID: 33444652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible conductive hydrogel fabricated with polyvinyl alcohol, carboxymethyl chitosan, cellulose nanofibrils, and lignin-based carbon applied as strain and pressure sensor.
    Li M; Tu Q; Long X; Zhang Q; Jiang H; Chen C; Wang S; Min D
    Int J Biol Macromol; 2021 Jan; 166():1526-1534. PubMed ID: 33181212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobically Associated Hydrogel for High Sensitivity and Resolution of an Interdigital Electrode Pressure Sensor.
    Cao X; Cao Q; Zhang T; Ji W; Muhammad U; Chen J; Wei Y
    Biomacromolecules; 2024 Jan; 25(1):143-154. PubMed ID: 38054613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resilient and Tough Conductive Polymer Hydrogel for a Low-Hysteresis Strain Sensor.
    Cao C; Huang T; Li Y
    Macromol Rapid Commun; 2024 Jan; 45(2):e2300467. PubMed ID: 37863475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-adhesive, conductive, and multifunctional hybrid hydrogel for flexible/wearable electronics based on triboelectric and piezoresistive sensor.
    Qiu C; He M; Xu SF; Ali AM; Shen L; Wang JS
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):131825. PubMed ID: 38679271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastretchable, Antifreezing, and High-Performance Strain Sensor Based on a Muscle-Inspired Anisotropic Conductive Hydrogel for Human Motion Monitoring and Wireless Transmission.
    Chen L; Chang X; Chen J; Zhu Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43833-43843. PubMed ID: 36112731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural Glycyrrhizic Acid-Tailored Homogeneous Conductive Polyaniline Hydrogel as a Flexible Strain Sensor.
    Zhao L; Zhang H; Guo Z; Yu X; Jiao X; Li MH; Hu J
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51394-51403. PubMed ID: 36397311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance transparent pressure sensors based on sea-urchin shaped metal nanoparticles and polyurethane microdome arrays for real-time monitoring.
    Lee D; Kim J; Kim H; Heo H; Park K; Lee Y
    Nanoscale; 2018 Oct; 10(39):18812-18820. PubMed ID: 30277251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.