These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 35230113)
1. Symmetry-Adapted Restraints for Binding Free Energy Calculations. Ebrahimi M; Hénin J J Chem Theory Comput; 2022 Apr; 18(4):2494-2502. PubMed ID: 35230113 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Receptor-Ligand Restraint Schemes for Alchemical Absolute Binding Free Energy Calculations. Clark F; Robb G; Cole DJ; Michel J J Chem Theory Comput; 2023 Jun; 19(12):3686-3704. PubMed ID: 37285579 [TBL] [Abstract][Full Text] [Related]
3. Building intuition for binding free energy calculations: Bound state definition, restraints, and symmetry. Duboué-Dijon E; Hénin J J Chem Phys; 2021 May; 154(20):204101. PubMed ID: 34241173 [TBL] [Abstract][Full Text] [Related]
4. A Streamlined, General Approach for Computing Ligand Binding Free Energies and Its Application to GPCR-Bound Cholesterol. Salari R; Joseph T; Lohia R; Hénin J; Brannigan G J Chem Theory Comput; 2018 Dec; 14(12):6560-6573. PubMed ID: 30358394 [TBL] [Abstract][Full Text] [Related]
5. PopShift: A Thermodynamically Sound Approach to Estimate Binding Free Energies by Accounting for Ligand-Induced Population Shifts from a Ligand-Free Markov State Model. Smith LG; Novak B; Osato M; Mobley DL; Bowman GR J Chem Theory Comput; 2024 Feb; 20(3):1036-1050. PubMed ID: 38291966 [TBL] [Abstract][Full Text] [Related]
6. Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Wang J; Deng Y; Roux B Biophys J; 2006 Oct; 91(8):2798-814. PubMed ID: 16844742 [TBL] [Abstract][Full Text] [Related]
7. The SAMPL6 SAMPLing challenge: assessing the reliability and efficiency of binding free energy calculations. Rizzi A; Jensen T; Slochower DR; Aldeghi M; Gapsys V; Ntekoumes D; Bosisio S; Papadourakis M; Henriksen NM; de Groot BL; Cournia Z; Dickson A; Michel J; Gilson MK; Shirts MR; Mobley DL; Chodera JD J Comput Aided Mol Des; 2020 May; 34(5):601-633. PubMed ID: 31984465 [TBL] [Abstract][Full Text] [Related]
8. Calculation of Standard Binding Free Energies: Aromatic Molecules in the T4 Lysozyme L99A Mutant. Deng Y; Roux B J Chem Theory Comput; 2006 Sep; 2(5):1255-73. PubMed ID: 26626834 [TBL] [Abstract][Full Text] [Related]
9. On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. Mobley DL; Chodera JD; Dill KA J Chem Phys; 2006 Aug; 125(8):084902. PubMed ID: 16965052 [TBL] [Abstract][Full Text] [Related]
10. CHARMM-GUI Ligand Binder for absolute binding free energy calculations and its application. Jo S; Jiang W; Lee HS; Roux B; Im W J Chem Inf Model; 2013 Jan; 53(1):267-77. PubMed ID: 23205773 [TBL] [Abstract][Full Text] [Related]
11. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations. Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821 [TBL] [Abstract][Full Text] [Related]
12. Combining Alchemical Transformation with a Physical Pathway to Accelerate Absolute Binding Free Energy Calculations of Charged Ligands to Enclosed Binding Sites. Cruz J; Wickstrom L; Yang D; Gallicchio E; Deng N J Chem Theory Comput; 2020 Apr; 16(4):2803-2813. PubMed ID: 32101691 [TBL] [Abstract][Full Text] [Related]
13. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials. Ge X; Roux B J Mol Recognit; 2010; 23(2):128-41. PubMed ID: 20151411 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive Approach to Simulating Large Scale Conformational Changes in Biological Systems Utilizing a Path Collective Variable and New Barrier Restraint. Kolossváry I; Sherman W J Phys Chem B; 2023 Jun; 127(23):5214-5229. PubMed ID: 37279354 [TBL] [Abstract][Full Text] [Related]
15. Alchemical free energy calculations via metadynamics: Application to the theophylline-RNA aptamer complex. Tanida Y; Matsuura A J Comput Chem; 2020 Jul; 41(20):1804-1819. PubMed ID: 32449538 [TBL] [Abstract][Full Text] [Related]
16. Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome. Ge X; Roux B J Phys Chem B; 2010 Jul; 114(29):9525-39. PubMed ID: 20608691 [TBL] [Abstract][Full Text] [Related]
17. Calculation of absolute protein-ligand binding free energy from computer simulations. Woo HJ; Roux B Proc Natl Acad Sci U S A; 2005 May; 102(19):6825-30. PubMed ID: 15867154 [TBL] [Abstract][Full Text] [Related]
18. On Restraints in End-Point Protein-Ligand Binding Free Energy Calculations. Menzer WM; Xie B; Minh DDL J Comput Chem; 2020 Mar; 41(6):573-586. PubMed ID: 31821590 [TBL] [Abstract][Full Text] [Related]
19. Computation of standard binding free energies of polar and charged ligands to the glutamate receptor GluA2. Heinzelmann G; Chen PC; Kuyucak S J Phys Chem B; 2014 Feb; 118(7):1813-24. PubMed ID: 24479628 [TBL] [Abstract][Full Text] [Related]
20. Absolute Protein Binding Free Energy Simulations for Ligands with Multiple Poses, a Thermodynamic Path That Avoids Exhaustive Enumeration of the Poses. Sakae Y; Zhang BW; Levy RM; Deng N J Comput Chem; 2020 Jan; 41(1):56-68. PubMed ID: 31621932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]