These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35230119)

  • 21. Vibrational Properties of a Two-Dimensional Silica Kagome Lattice.
    Björkman T; Skakalova V; Kurasch S; Kaiser U; Meyer JC; Smet JH; Krasheninnikov AV
    ACS Nano; 2016 Dec; 10(12):10929-10935. PubMed ID: 28024359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Designing Kagome Lattice from Potassium Atoms on Phosphorus-Gold Surface Alloy.
    Sun S; Zhao S; Luo YZ; Gu X; Lian X; Tadich A; Qi DC; Ma Z; Zheng Y; Gu C; Zhang JL; Li Z; Chen W
    Nano Lett; 2020 Jul; 20(7):5583-5589. PubMed ID: 32568547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New Nabokoite-like Phases ACu
    Murtazoev AF; Lyssenko KA; Markina MM; Dolgikh VA; Vasiliev AN; Berdonosov PS
    Chemphyschem; 2023 Aug; 24(15):e202300111. PubMed ID: 37191070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kagome lattice made by impenetrable ellipses with attractive walls.
    Baumketner A; Melnyk R
    Soft Matter; 2022 May; 18(19):3801-3814. PubMed ID: 35522892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-assembly of kagome lattices, entangled webs and linear fibers with vibrating patchy particles in two dimensions.
    Chapela GA; Guzmán O; Martínez-González JA; Díaz-Leyva P; Quintana-H J
    Soft Matter; 2014 Dec; 10(45):9167-76. PubMed ID: 25319927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dichotomous array of chiral quantum corrals by a self-assembled nanoporous kagomé network.
    Klappenberger F; Kühne D; Krenner W; Silanes I; Arnau A; García de Abajo FJ; Klyatskaya S; Ruben M; Barth JV
    Nano Lett; 2009 Oct; 9(10):3509-14. PubMed ID: 19534501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topology Selectivity in On-Surface Dehydrogenative Coupling Reaction: Dendritic Structure
    Huang J; Pan Y; Wang T; Cui S; Feng L; Han D; Zhang W; Zeng Z; Li X; Du P; Wu X; Zhu J
    ACS Nano; 2021 Mar; 15(3):4617-4626. PubMed ID: 33591725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective synthesis of Kagome nanoporous graphene on Ag(111)
    Li X; Han D; Qin T; Xiong J; Huang J; Wang T; Ding H; Hu J; Xu Q; Zhu J
    Nanoscale; 2022 Apr; 14(16):6239-6247. PubMed ID: 35403634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Concentration-Directed Polymorphic Surface Covalent Organic Frameworks: Rhombus, Parallelogram, and Kagome.
    Mo YP; Liu XH; Wang D
    ACS Nano; 2017 Nov; 11(11):11694-11700. PubMed ID: 29131939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Massive Dirac fermions in a ferromagnetic kagome metal.
    Ye L; Kang M; Liu J; von Cube F; Wicker CR; Suzuki T; Jozwiak C; Bostwick A; Rotenberg E; Bell DC; Fu L; Comin R; Checkelsky JG
    Nature; 2018 Mar; 555(7698):638-642. PubMed ID: 29555992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice.
    Telychko M; Li G; Mutombo P; Soler-Polo D; Peng X; Su J; Song S; Koh MJ; Edmonds M; Jelínek P; Wu J; Lu J
    Sci Adv; 2021 Jan; 7(3):. PubMed ID: 33523911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence of two-dimensional flat band at the surface of antiferromagnetic kagome metal FeSn.
    Han M; Inoue H; Fang S; John C; Ye L; Chan MK; Graf D; Suzuki T; Ghimire MP; Cho WJ; Kaxiras E; Checkelsky JG
    Nat Commun; 2021 Sep; 12(1):5345. PubMed ID: 34526494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembly and spectroscopic fingerprints of photoactive pyrenyl tectons on
    Zimmermann DM; Seufert K; Ðorđević L; Hoh T; Joshi S; Marangoni T; Bonifazi D; Auwärter W
    Beilstein J Nanotechnol; 2020; 11():1470-1483. PubMed ID: 33083195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constructing and Transferring Two-Dimensional Tessellation Kagome Lattices via Chemical Reactions on Cu(111) Surface.
    Wang J; Zheng Y; Nie X; Xu C; Hao Z; Song L; You S; Xi J; Pan M; Lin H; Li Y; Zhang H; Li Q; Chi L
    J Phys Chem Lett; 2021 Sep; 12(34):8151-8156. PubMed ID: 34410130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of Two-Dimensional Organometallic Coordination Networks with Both Organic Kagome and Semiregular Metal Lattices on Au(111).
    Kang LX; Wang BX; Zhang XY; Zhu YC; Li DY; Liu PN
    J Phys Chem Lett; 2024 Jun; 15(23):6108-6114. PubMed ID: 38829304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activity-Enhanced Self-Assembly of a Colloidal Kagome Lattice.
    Mallory SA; Cacciuto A
    J Am Chem Soc; 2019 Feb; 141(6):2500-2507. PubMed ID: 30669843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Porphyrin-based two-dimensional coordination Kagome lattice self-assembled on a Au(111) surface.
    Shi Z; Lin N
    J Am Chem Soc; 2009 Apr; 131(15):5376-7. PubMed ID: 20560634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directed organization of C70 kagome lattice by titanyl phthalocyanine monolayer template.
    Wei Y; Reutt-Robey JE
    J Am Chem Soc; 2011 Oct; 133(39):15232-5. PubMed ID: 21888399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Successive Deprotonation Steering the Structural Evolution of Supramolecular Assemblies on Ag(111).
    Shi J; Li Z; Lin T; Shi Z
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High applicability of two-dimensional phosphorous in Kagome lattice predicted from first-principles calculations.
    Chen PJ; Jeng HT
    Sci Rep; 2016 Mar; 6():23151. PubMed ID: 26980060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.