These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35230361)

  • 1. Enzyme kinetics in confined geometries at the single enzyme level.
    Murahara H; Kaji N; Tokeshi M; Baba Y
    Analyst; 2022 Mar; 147(7):1375-1384. PubMed ID: 35230361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual substrate/solvent- roles of water and mixed reaction-diffusion control of β-Galactosidase catalyzed reactions in PEG-induced macromolecular crowding conditions.
    Nolan V; Clop PD; Burgos MI; Perillo MA
    Biochem Biophys Res Commun; 2019 Jul; 515(1):190-195. PubMed ID: 31133380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of convection and diffusion to the cascade reaction kinetics of β-galactosidase/glucose oxidase confined in a microchannel.
    Wu ZQ; Li ZQ; Li JY; Gu J; Xia XH
    Phys Chem Chem Phys; 2016 May; 18(21):14460-5. PubMed ID: 27174424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro- and nanochamber array system for single enzyme assays.
    Iijima K; Kaji N; Tokeshi M; Baba Y
    Sci Rep; 2023 Aug; 13(1):13322. PubMed ID: 37587179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule mobility in confined and crowded femtolitre chambers.
    Fowlkes JD; Collier CP
    Lab Chip; 2013 Mar; 13(5):877-85. PubMed ID: 23303284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition-State Ensembles Navigate the Pathways of Enzyme Catalysis.
    Mickert MJ; Gorris HH
    J Phys Chem B; 2018 Jun; 122(22):5809-5819. PubMed ID: 29742901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-in-one enzyme assay based on single molecule detection in femtoliter arrays.
    Liebherr RB; Hutterer A; Mickert MJ; Vogl FC; Beutner A; Lechner A; Hummel H; Gorris HH
    Anal Bioanal Chem; 2015 Sep; 407(24):7443-52. PubMed ID: 26253226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity modulation and reusability of beta-D-galactosidase confined in sol-gel derived porous silicate glass.
    Crescimbeni MC; Nolan V; Clop PD; Marín GN; Perillo MA
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):387-96. PubMed ID: 20042321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental Topology and Water Availability Modulates the Catalytic Activity of β-Galactosidase Entrapped in a Nanosporous Silicate Matrix.
    Burgos MI; Velasco MI; Acosta RH; Perillo MA
    Sci Rep; 2016 Nov; 6():36593. PubMed ID: 27811995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Revisit to Turnover Kinetics of Individual
    Kundu P; Saha S; Gangopadhyay G
    J Phys Chem B; 2021 Jul; 125(29):8010-8020. PubMed ID: 34270240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a pressure-driven nanofluidic control system and its application to an enzymatic reaction.
    Tsukahara T; Mawatari K; Hibara A; Kitamori T
    Anal Bioanal Chem; 2008 Aug; 391(8):2745-52. PubMed ID: 18581104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast mixing and reaction initiation control of single-enzyme kinetics in confined volumes.
    Jung SY; Liu Y; Collier CP
    Langmuir; 2008 May; 24(9):4439-42. PubMed ID: 18361535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monogalactopyranosides of fluorescein and fluorescein methyl ester: synthesis, enzymatic hydrolysis by biotnylated β-galactosidase, and determination of translational diffusion coefficient.
    Mandal PK; Cattiaux L; Bensimon D; Mallet JM
    Carbohydr Res; 2012 Sep; 358():40-6. PubMed ID: 22817995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct and long-lived activity states of single enzyme molecules.
    Rissin DM; Gorris HH; Walt DR
    J Am Chem Soc; 2008 Apr; 130(15):5349-53. PubMed ID: 18318491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate inhibition or activation kinetics of the beta-galactosidase from the extreme thermoacidophile archaebacterium Caldariella acidophila.
    Pulvin S; Friboulet A; Thomas D
    Biochim Biophys Acta; 1990 Nov; 1041(2):97-100. PubMed ID: 2124928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 2. Reactions of the galactosyl-enzyme intermediate with alcohols and azide ion.
    Richard JP; Westerfeld JG; Lin S; Beard J
    Biochemistry; 1995 Sep; 34(37):11713-24. PubMed ID: 7547903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of enzymes on spongy polyvinyl alcohol cryogels: the example of beta-galactosidase from Aspergillus oryzae.
    Rossi A; Morana A; Lernia ID; Di tombrino A; De Rosa M
    Ital J Biochem; 1999 Jun; 48(2):91-7. PubMed ID: 10434188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. α-Chymotrypsin-catalyzed reaction confined in block-copolymer vesicles.
    Chen Q; Rausch KG; Schönherr H; Vancso GJ
    Chemphyschem; 2010 Nov; 11(16):3534-40. PubMed ID: 20973117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity and other properties of the beta-D-galactosidase from Aspergillus niger.
    Sykes DE; Abbas SA; Barlow JJ; Matta KL
    Carbohydr Res; 1983 May; 116(1):127-38. PubMed ID: 6409408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.