BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35230375)

  • 1. Single-particle study: effects of mercury amalgamation on morphological and spectral changes in anisotropic gold nanorods.
    Lee J; Kim GW; Ha JW
    Analyst; 2022 Mar; 147(6):1066-1070. PubMed ID: 35230375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Particle Study on Hg Amalgamation Mechanism and Slow Inward Diffusion in Mesoporous Silica-Coated Gold Nanorods without Structural Deformation.
    Kim GW; Ha JW
    J Phys Chem Lett; 2022 Mar; 13(11):2607-2613. PubMed ID: 35293762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning plasmonic properties by promoting the inward Hg diffusion
    Alizar YY; Ramasamy M; Ha JW
    Analyst; 2022 Aug; 147(16):3623-3627. PubMed ID: 35861607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of oxygen plasma treatment on structural and spectral changes in silica-coated gold nanorods studied using total internal reflection microscopy and spectroscopy.
    Lee J; Ha JW
    Analyst; 2021 Jun; 146(13):4125-4129. PubMed ID: 34076657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-particle spectroelectrochemistry: electrochemical tuning of plasmonic properties
    Alizar YY; Ha JW
    Analyst; 2022 May; 147(10):2035-2039. PubMed ID: 35510604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of oxygen plasma treatment on structural and spectral changes in gold nanorods immobilized on indium tin oxide surfaces.
    Ramasamy M; Ha JW
    J Chem Phys; 2022 Jul; 157(1):014702. PubMed ID: 35803798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Chemical Interface Damping: Competition between Surface Damping Pathways in Amalgamated Gold Nanorods Coated with Mesoporous Silica Shells.
    Alizar YY; Ramasamy M; Kim GW; Ha JW
    JACS Au; 2023 Nov; 3(11):3247-3258. PubMed ID: 38034978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-particle study: effects of oxygen plasma treatment on structural and spectral changes of anisotropic gold nanorods.
    Kim GW; Ha JW
    Phys Chem Chem Phys; 2020 Jun; 22(21):11767-11770. PubMed ID: 32432291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single particle study: size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods.
    Moon SW; Tsalu PV; Ha JW
    Phys Chem Chem Phys; 2018 Aug; 20(34):22197-22202. PubMed ID: 30116800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Amine Linkers with Different Carbon Chain Lengths at Guanine-Rich Polynucleotides on Chemical Interface Damping in Single Gold Nanorods.
    Lee J; Ha JW
    Anal Chem; 2022 May; 94(19):7100-7106. PubMed ID: 35511452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elemental mercury vapor interaction with individual gold nanorods.
    James JZ; Lucas D; Koshland CP
    Analyst; 2013 Apr; 138(8):2323-8. PubMed ID: 23446550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the spectral shifts in LSPR biosensing using DNA-functionalized gold nanorods in a competitive assay format for the detection of interferon-γ.
    Lin DZ; Chuang PC; Liao PC; Chen JP; Chen YF
    Biosens Bioelectron; 2016 Jul; 81():221-228. PubMed ID: 26954787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using L-arginine-functionalized gold nanorods for visible detection of mercury(II) ions.
    Guan J; Wang YC; Gunasekaran S
    J Food Sci; 2015 Apr; 80(4):N828-33. PubMed ID: 25754066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyamine-capped gold nanorod as a localized surface Plasmon resonance probe for rapid and sensitive copper(II) ion detection.
    Liu Y; Zhao Y; Wang Y; Li CM
    J Colloid Interface Sci; 2015 Feb; 439():7-11. PubMed ID: 25463169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury.
    Huang H; Qu C; Liu X; Huang S; Xu Z; Zhu Y; Chu PK
    Chem Commun (Camb); 2011 Jun; 47(24):6897-9. PubMed ID: 21603718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The aggregation enhanced photoluminescence of gold nanorods in aqueous solutions.
    Cen Y; Huang X; Zhang R; Chen JY
    J Fluoresc; 2014 Sep; 24(5):1481-6. PubMed ID: 25096523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-particle correlation study: chemical interface damping induced by biotinylated proteins with sulfur in plasmonic gold nanorods.
    Moon SW; Ha JW
    Phys Chem Chem Phys; 2019 Mar; 21(13):7061-7066. PubMed ID: 30874711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-particle spectroscopy and defocused imaging of anisotropic gold nanorods by total internal reflection scattering microscopy.
    Lee J; Kim GW; Ha JW
    Analyst; 2020 Sep; 145(18):6038-6044. PubMed ID: 32749393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength-Tunable Optical Fiber Localized Surface Plasmon Resonance Biosensor
    Lu M; Zhu H; Hong L; Zhao J; Masson JF; Peng W
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50929-50940. PubMed ID: 33136359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of shell thickness on the refractive index sensitivity of localized surface plasmon resonance inflection points in silver-coated gold nanorods.
    Ryu KR; Ha JW
    RSC Adv; 2020 Apr; 10(29):16827-16831. PubMed ID: 35496926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.