These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35231036)

  • 1. Quantifying interaction uncertainty between subwatersheds and base-flow partitions on hydrological processes.
    Yan B; Xu Y
    PLoS One; 2022; 17(3):e0261859. PubMed ID: 35231036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating Historical Baseflow Characteristics and Variations in the Upper Yellow River Basin, China.
    Zhao G; Kong L; Li Y; Xu Y; Li Z
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35954621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal heterogeneity and attributions of streamflow and baseflow changes across the headstreams of the Tarim River Basin, Northwest China.
    Li H; Wang W; Fu J; Wei J
    Sci Total Environ; 2023 Jan; 856(Pt 2):159230. PubMed ID: 36208752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the impact of climate change and human activity on streamflow in a semiarid basin using precipitation and baseflow analysis.
    Saedi J; Sharifi MR; Saremi A; Babazadeh H
    Sci Rep; 2022 Jun; 12(1):9228. PubMed ID: 35654803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterising baseflow signature variability in the Yellow River Basin.
    Lyu S; Guo C; Zhai Y; Huang M; Zhang G; Zhang Y; Cheng L; Liu Q; Zhou Y; Woods R; Zhang J
    J Environ Manage; 2023 Nov; 345():118565. PubMed ID: 37429090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Baseflow separation methods in hydrological process research: a review].
    Xu LL; Liu JL; Jin CJ; Wang AZ; Guan DX; Wu JB; Yuan FH
    Ying Yong Sheng Tai Xue Bao; 2011 Nov; 22(11):3073-80. PubMed ID: 22303690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced SWAT calibration through intelligent range-based parameter optimization.
    Zhao L; Li H; Li C; Zhao Y; Du X; Ye X; Li F
    J Environ Manage; 2024 Sep; 367():121933. PubMed ID: 39083936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of the runoff process to meteorological drought: Baseflow index as an important indicator.
    Mao R; Shi A; Song J; Xu W; Tang B; Li B
    J Environ Manage; 2023 Nov; 345():118843. PubMed ID: 37598491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced streamflow prediction with SWAT using support vector regression for spatial calibration: A case study in the Illinois River watershed, U.S.
    Yuan L; Forshay KJ
    PLoS One; 2021; 16(4):e0248489. PubMed ID: 33844687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming equifinality: time-varying analysis of sensitivity and identifiability of SWAT runoff and sediment parameters in an arid and semiarid watershed.
    Wu L; Liu X; Chen J; Yu Y; Ma X
    Environ Sci Pollut Res Int; 2022 May; 29(21):31631-31645. PubMed ID: 35006572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating daily time series of streamflow using hydrological model calibrated based on satellite observations of river water surface width: Toward real world applications.
    Sun W; Ishidaira H; Bastola S; Yu J
    Environ Res; 2015 May; 139():36-45. PubMed ID: 25680241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Runoff process in forested basin of Hun River-Taizi River, Northeast China: a simulation study].
    Cai YC; Jin CJ; Wang AZ; Guan DX; Wu JB; Yuan FH
    Ying Yong Sheng Tai Xue Bao; 2013 Oct; 24(10):2779-86. PubMed ID: 24483070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Watershed model calibration framework developed using an influence coefficient algorithm and a genetic algorithm and analysis of pollutant discharge characteristics and load reduction in a TMDL planning area.
    Cho JH; Lee JH
    J Environ Manage; 2015 Nov; 163():2-10. PubMed ID: 26275596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How uncertainty in calibration data affects the modeling of non-point source pollutant loads in baseflow.
    Chen S; Qin W; Cui T; Qian J; Zheng J
    J Contam Hydrol; 2024 Nov; 267():104441. PubMed ID: 39413501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainty of runoff sensitivity to climate change in the Amazon River basin.
    Carmona AM; Renner M; Kleidon A; Poveda G
    Ann N Y Acad Sci; 2021 Nov; 1504(1):76-94. PubMed ID: 33155309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of urban imperviousness scenarios on simulated storm flow.
    Pan F; Choi W; Choi J
    Environ Monit Assess; 2018 Aug; 190(9):499. PubMed ID: 30076475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretable baseflow segmentation and prediction based on numerical experiments and deep learning.
    Yu Q; Shi C; Bai Y; Zhang J; Lu Z; Xu Y; Li W; Liu C; Soomro SE; Tian L; Hu C
    J Environ Manage; 2024 Jun; 360():121089. PubMed ID: 38733842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrological impacts of future climate and land use/cover changes in the Lower Mekong Basin: a case study of the Srepok River Basin, Vietnam.
    Nhi PTT; Khoi DN; Trang NTT; Van Ty T; Fang S
    Environ Monit Assess; 2022 Oct; 194(Suppl 2):768. PubMed ID: 36255530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Groundwater recharge estimation using WetSpass-M and MTBS leveraging from HydroOffice and WHAT tools for baseflow in Weyib watershed, Ethiopia.
    Aredo MR; Lohani TK; Mohammed AK
    Environ Monit Assess; 2024 May; 196(6):532. PubMed ID: 38727964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China.
    Zhang L; Nan Z; Xu Y; Li S
    PLoS One; 2016; 11(6):e0158394. PubMed ID: 27348224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.