BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35231606)

  • 1. Ca
    Meng Y; Ding P; Wang H; Yang X; Wang Z; Nie D; Liu J; Huang Y; Su G; Hu J; Su Y; Du X; Dong N; Jia H; Zhang H; Zhang J; Li J
    Biochim Biophys Acta Mol Cell Biol Lipids; 2022 Jun; 1867(6):159120. PubMed ID: 35231606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMPK-dependent inhibitory phosphorylation of ACC is not essential for maintaining myocardial fatty acid oxidation.
    Zordoky BN; Nagendran J; Pulinilkunnil T; Kienesberger PC; Masson G; Waller TJ; Kemp BE; Steinberg GR; Dyck JR
    Circ Res; 2014 Aug; 115(5):518-24. PubMed ID: 25001074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myocardial hypertrophy and the maturation of fatty acid oxidation in the newborn human heart.
    Yatscoff MA; Jaswal JS; Grant MR; Greenwood R; Lukat T; Beker DL; Rebeyka IM; Lopaschuk GD
    Pediatr Res; 2008 Dec; 64(6):643-7. PubMed ID: 18614968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malonyl CoA control of fatty acid oxidation in the ischemic heart.
    Dyck JR; Lopaschuk GD
    J Mol Cell Cardiol; 2002 Sep; 34(9):1099-109. PubMed ID: 12392882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMP-activated protein kinase regulation of fatty acid oxidation in the ischaemic heart.
    Hopkins TA; Dyck JR; Lopaschuk GD
    Biochem Soc Trans; 2003 Feb; 31(Pt 1):207-12. PubMed ID: 12546686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new leptin-mediated mechanism for stimulating fatty acid oxidation: a pivotal role for sarcolemmal FAT/CD36.
    Momken I; Chabowski A; Dirkx E; Nabben M; Jain SS; McFarlan JT; Glatz JF; Luiken JJ; Bonen A
    Biochem J; 2017 Jan; 474(1):149-162. PubMed ID: 27827305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the involvement of CaMKII and AMPK in Ca2+-dependent signaling pathways regulating FA uptake and oxidation in contracting rodent muscle.
    Raney MA; Turcotte LP
    J Appl Physiol (1985); 2008 May; 104(5):1366-73. PubMed ID: 18309092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase.
    Kudo N; Barr AJ; Barr RL; Desai S; Lopaschuk GD
    J Biol Chem; 1995 Jul; 270(29):17513-20. PubMed ID: 7615556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of 5'AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia.
    Kudo N; Gillespie JG; Kung L; Witters LA; Schulz R; Clanachan AS; Lopaschuk GD
    Biochim Biophys Acta; 1996 May; 1301(1-2):67-75. PubMed ID: 8652652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CTRP1 protein enhances fatty acid oxidation via AMP-activated protein kinase (AMPK) activation and acetyl-CoA carboxylase (ACC) inhibition.
    Peterson JM; Aja S; Wei Z; Wong GW
    J Biol Chem; 2012 Jan; 287(2):1576-87. PubMed ID: 22086915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation.
    Tomas E; Tsao TS; Saha AK; Murrey HE; Zhang Cc Cc; Itani SI; Lodish HF; Ruderman NB
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16309-13. PubMed ID: 12456889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis.
    Atkinson LL; Fischer MA; Lopaschuk GD
    J Biol Chem; 2002 Aug; 277(33):29424-30. PubMed ID: 12058043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cardiac malonyl-CoA content and fatty acid oxidation during increased cardiac power.
    King KL; Okere IC; Sharma N; Dyck JR; Reszko AE; McElfresh TA; Kerner J; Chandler MP; Lopaschuk GD; Stanley WC
    Am J Physiol Heart Circ Physiol; 2005 Sep; 289(3):H1033-7. PubMed ID: 15821035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upregulation of 5'-AMP-activated protein kinase is responsible for the increase in myocardial fatty acid oxidation rates following birth in the newborn rabbit.
    Makinde AO; Gamble J; Lopaschuk GD
    Circ Res; 1997 Apr; 80(4):482-9. PubMed ID: 9118478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise.
    Park H; Kaushik VK; Constant S; Prentki M; Przybytkowski E; Ruderman NB; Saha AK
    J Biol Chem; 2002 Sep; 277(36):32571-7. PubMed ID: 12065578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMP-activated protein kinase control of fat metabolism in skeletal muscle.
    Thomson DM; Winder WW
    Acta Physiol (Oxf); 2009 May; 196(1):147-54. PubMed ID: 19245653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of AMPK activation by CD36 links fatty acid uptake to β-oxidation.
    Samovski D; Sun J; Pietka T; Gross RW; Eckel RH; Su X; Stahl PD; Abumrad NA
    Diabetes; 2015 Feb; 64(2):353-9. PubMed ID: 25157091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adiponectin stimulates lipid metabolism via AMPK in rabbit blastocysts.
    Schindler M; Pendzialek M; Grybel KJ; Seeling T; Gürke J; Fischer B; Navarrete Santos A
    Hum Reprod; 2017 Jul; 32(7):1382-1392. PubMed ID: 28472298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation.
    Dzamko N; Schertzer JD; Ryall JG; Steel R; Macaulay SL; Wee S; Chen ZP; Michell BJ; Oakhill JS; Watt MJ; Jørgensen SB; Lynch GS; Kemp BE; Steinberg GR
    J Physiol; 2008 Dec; 586(23):5819-31. PubMed ID: 18845612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle.
    Thomson DM; Brown JD; Fillmore N; Condon BM; Kim HJ; Barrow JR; Winder WW
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1572-9. PubMed ID: 17925454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.