These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35231749)

  • 21. To the Editor: Molecular epidemiology of toxigenic Clostridium difficile isolates in Korea.
    Cho SY; Nam Y; Soh YS; Park TS; Lee HJ
    Epidemiol Infect; 2014 Aug; 142(8):1651-2. PubMed ID: 24290036
    [No Abstract]   [Full Text] [Related]  

  • 22. Second messenger signaling in Clostridioides difficile.
    Purcell EB
    Curr Opin Microbiol; 2022 Feb; 65():138-144. PubMed ID: 34864551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo commensal control of Clostridioides difficile virulence.
    Girinathan BP; DiBenedetto N; Worley JN; Peltier J; Arrieta-Ortiz ML; Immanuel SRC; Lavin R; Delaney ML; Cummins CK; Hoffman M; Luo Y; Gonzalez-Escalona N; Allard M; Onderdonk AB; Gerber GK; Sonenshein AL; Baliga NS; Dupuy B; Bry L
    Cell Host Microbe; 2021 Nov; 29(11):1693-1708.e7. PubMed ID: 34637781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predictive regulatory and metabolic network models for systems analysis of Clostridioides difficile.
    Arrieta-Ortiz ML; Immanuel SRC; Turkarslan S; Wu WJ; Girinathan BP; Worley JN; DiBenedetto N; Soutourina O; Peltier J; Dupuy B; Bry L; Baliga NS
    Cell Host Microbe; 2021 Nov; 29(11):1709-1723.e5. PubMed ID: 34637780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota.
    Fletcher JR; Pike CM; Parsons RJ; Rivera AJ; Foley MH; McLaren MR; Montgomery SA; Theriot CM
    Nat Commun; 2021 Jan; 12(1):462. PubMed ID: 33469019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The flagellin FliC of Clostridium difficile is responsible for pleiotropic gene regulation during in vivo infection.
    Barketi-Klai A; Monot M; Hoys S; Lambert-Bordes S; Kuehne SA; Minton N; Collignon A; Dupuy B; Kansau I
    PLoS One; 2014; 9(5):e96876. PubMed ID: 24841151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteogenomic analysis of the Clostridium difficile exoproteome reveals a correlation between phylogenetic distribution and virulence potential.
    Quesada-Gómez C; Murillo T; Arce G; Badilla-Lobo A; Castro-Peña C; Molina J; López-Ureña D; González-Camacho S; Lomonte B; Chacón-Díaz C; Rodríguez C; Chaves-Olarte E
    Anaerobe; 2020 Apr; 62():102151. PubMed ID: 31945474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The chaperone ClpC participates in sporulation, motility, biofilm, and toxin production of Clostridioides difficile.
    Queraltó C; Ortega C; Díaz-Yáñez F; Inostroza O; Espinoza G; Álvarez R; González R; Parra F; Paredes-Sabja D; Acuña LG; Calderón IL; Fuentes JA; Gil F
    J Glob Antimicrob Resist; 2023 Jun; 33():328-336. PubMed ID: 37211213
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulatory Targets of the Response Regulator RR_1586 from Clostridioides difficile Identified Using a Bacterial One-Hybrid Screen.
    Hebdon SD; Menon SK; Richter-Addo GB; Karr EA; West AH
    J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30201779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spo0A Suppresses
    Dhungel BA; Govind R
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33148827
    [No Abstract]   [Full Text] [Related]  

  • 31. A network of small RNAs regulates sporulation initiation in Clostridioides difficile.
    Fuchs M; Lamm-Schmidt V; Lenče T; Sulzer J; Bublitz A; Wackenreuter J; Gerovac M; Strowig T; Faber F
    EMBO J; 2023 Jun; 42(12):e112858. PubMed ID: 37140366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Whole-Genome Sequencing Reveals the High Nosocomial Transmission and Antimicrobial Resistance of Clostridioides difficile in a Single Center in China, a Four-Year Retrospective Study.
    Wen X; Shen C; Xia J; Zhong LL; Wu Z; Ahmed MAEE; Long N; Ma F; Zhang G; Wu W; Luo J; Xia Y; Dai M; Zhang L; Liao K; Feng S; Chen C; Chen Y; Luo W; Tian GB
    Microbiol Spectr; 2022 Feb; 10(1):e0132221. PubMed ID: 35019676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of defined gut microbial ecosystem components on virulence determinants of Clostridioides difficile.
    Carlucci C; Jones CS; Oliphant K; Yen S; Daigneault M; Carriero C; Robinson A; Petrof EO; Weese JS; Allen-Vercoe E
    Sci Rep; 2019 Jan; 9(1):885. PubMed ID: 30696914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New ribotype
    Gu W; Wang W; Li W; Li N; Wang Y; Zhang W; Lu C; Tong P; Han Y; Sun X; Lu J; Wu Y; Dai J
    Emerg Microbes Infect; 2021 Dec; 10(1):687-699. PubMed ID: 33682630
    [No Abstract]   [Full Text] [Related]  

  • 35. VirB4- and VirD4-Like ATPases, Components of a Putative Type 4C Secretion System in Clostridioides difficile.
    Sorokina J; Sokolova I; Rybolovlev I; Shevlyagina N; Troitskiy V; Zhukhovitsky V; Belyi Y
    J Bacteriol; 2021 Oct; 203(21):e0035921. PubMed ID: 34424036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The (p)ppGpp Synthetase RSH Mediates Stationary-Phase Onset and Antibiotic Stress Survival in Clostridioides difficile.
    Pokhrel A; Poudel A; Castro KB; Celestine MJ; Oludiran A; Rinehold AJ; Resek AM; Mhanna MA; Purcell EB
    J Bacteriol; 2020 Sep; 202(19):. PubMed ID: 32661079
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of flagella in Clostridium difficile pathogenicity.
    Stevenson E; Minton NP; Kuehne SA
    Trends Microbiol; 2015 May; 23(5):275-82. PubMed ID: 25659185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of novel, cryptic
    Williamson CHD; Stone NE; Nunnally AE; Roe CC; Vazquez AJ; Lucero SA; Hornstra H; Wagner DM; Keim P; Rupnik M; Janezic S; Sahl JW
    Microb Genom; 2022 Feb; 8(2):. PubMed ID: 35166655
    [No Abstract]   [Full Text] [Related]  

  • 39. Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis.
    Oliveira PH; Ribis JW; Garrett EM; Trzilova D; Kim A; Sekulovic O; Mead EA; Pak T; Zhu S; Deikus G; Touchon M; Lewis-Sandari M; Beckford C; Zeitouni NE; Altman DR; Webster E; Oussenko I; Bunyavanich S; Aggarwal AK; Bashir A; Patel G; Wallach F; Hamula C; Huprikar S; Schadt EE; Sebra R; van Bakel H; Kasarskis A; Tamayo R; Shen A; Fang G
    Nat Microbiol; 2020 Jan; 5(1):166-180. PubMed ID: 31768029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel C. difficile toxin receptor.
    Hofer U
    Nat Rev Microbiol; 2022 Jun; 20(6):317. PubMed ID: 35332272
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.