These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 35231835)
1. An accurate and efficient method to train classifiers for atrial fibrillation detection in ECGs: Learning by asking better questions. Wesselius FJ; van Schie MS; de Groot NMS; Hendriks RC Comput Biol Med; 2022 Apr; 143():105331. PubMed ID: 35231835 [TBL] [Abstract][Full Text] [Related]
2. Novel interpretable Feature set extraction and classification for accurate atrial fibrillation detection from ECGs. Sharmin R; Brindise MC; Kolliyil JJ; Meyers BA; Zhang J; Vlachos PP Comput Biol Med; 2024 Sep; 179():108872. PubMed ID: 39013342 [TBL] [Abstract][Full Text] [Related]
3. Ranking of the most reliable beat morphology and heart rate variability features for the detection of atrial fibrillation in short single-lead ECG. Christov I; Krasteva V; Simova I; Neycheva T; Schmid R Physiol Meas; 2018 Sep; 39(9):094005. PubMed ID: 30102603 [TBL] [Abstract][Full Text] [Related]
4. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Attia ZI; Noseworthy PA; Lopez-Jimenez F; Asirvatham SJ; Deshmukh AJ; Gersh BJ; Carter RE; Yao X; Rabinstein AA; Erickson BJ; Kapa S; Friedman PA Lancet; 2019 Sep; 394(10201):861-867. PubMed ID: 31378392 [TBL] [Abstract][Full Text] [Related]
5. Optimization of Using Multiple Machine Learning Approaches in Atrial Fibrillation Detection Based on a Large-Scale Data Set of 12-Lead Electrocardiograms: Cross-Sectional Study. Chuang BB; Yang AC JMIR Form Res; 2024 Mar; 8():e47803. PubMed ID: 38466973 [TBL] [Abstract][Full Text] [Related]
6. A Comprehensive Study of Complexity and Performance of Automatic Detection of Atrial Fibrillation: Classification of Long ECG Recordings Based on the PhysioNet Computing in Cardiology Challenge 2017. Kleyko D; Osipov E; Wiklund U Biomed Phys Eng Express; 2020 Feb; 6(2):025010. PubMed ID: 33438636 [TBL] [Abstract][Full Text] [Related]
7. Digital biomarkers and algorithms for detection of atrial fibrillation using surface electrocardiograms: A systematic review. Wesselius FJ; van Schie MS; De Groot NMS; Hendriks RC Comput Biol Med; 2021 Jun; 133():104404. PubMed ID: 33951551 [TBL] [Abstract][Full Text] [Related]
8. Short-term atrial fibrillation detection using electrocardiograms: A comparison of machine learning approaches. Jahan MS; Mansourvar M; Puthusserypady S; Wiil UK; Peimankar A Int J Med Inform; 2022 Jul; 163():104790. PubMed ID: 35552189 [TBL] [Abstract][Full Text] [Related]
9. Enhancing the detection of atrial fibrillation from wearable sensors with neural style transfer and convolutional recurrent networks. Xiong Z; Stiles MK; Gillis AM; Zhao J Comput Biol Med; 2022 Jul; 146():105551. PubMed ID: 35533458 [TBL] [Abstract][Full Text] [Related]
10. A fully-automated paper ECG digitisation algorithm using deep learning. Wu H; Patel KHK; Li X; Zhang B; Galazis C; Bajaj N; Sau A; Shi X; Sun L; Tao Y; Al-Qaysi H; Tarusan L; Yasmin N; Grewal N; Kapoor G; Waks JW; Kramer DB; Peters NS; Ng FS Sci Rep; 2022 Dec; 12(1):20963. PubMed ID: 36471089 [TBL] [Abstract][Full Text] [Related]
11. Automated identification of atrial fibrillation from single-lead ECGs using multi-branching ResNet. Xie J; Stavrakis S; Yao B Front Physiol; 2024; 15():1362185. PubMed ID: 38655032 [No Abstract] [Full Text] [Related]
12. Detection of atrial fibrillation and other abnormal rhythms from ECG using a multi-layer classifier architecture. Mukherjee A; Dutta Choudhury A; Datta S; Puri C; Banerjee R; Singh R; Ukil A; Bandyopadhyay S; Pal A; Khandelwal S Physiol Meas; 2019 Jun; 40(5):054006. PubMed ID: 30650387 [TBL] [Abstract][Full Text] [Related]
13. Diagnosis of atrial fibrillation based on AI-detected anomalies of ECG segments. Choi S; Choi K; Yun HK; Kim SH; Choi HH; Park YS; Joo S Heliyon; 2024 Jan; 10(1):e23597. PubMed ID: 38187293 [TBL] [Abstract][Full Text] [Related]
14. From 12 to 1 ECG lead: multiple cardiac condition detection mixing a hybrid machine learning approach with a one-versus-rest classification strategy. Jiménez-Serrano S; Rodrigo M; Calvo CJ; Millet J; Castells F Physiol Meas; 2022 Jun; 43(6):. PubMed ID: 35609610 [No Abstract] [Full Text] [Related]
15. AF detection from ECG recordings using feature selection, sparse coding, and ensemble learning. Rizwan M; Whitaker BM; Anderson DV Physiol Meas; 2018 Dec; 39(12):124007. PubMed ID: 30524091 [TBL] [Abstract][Full Text] [Related]
16. Validation of Electrocardiogram Based Photoplethysmogram Generated Using U-Net Based Generative Adversarial Networks. Sohn J; Shin H; Lee J; Kim HC J Healthc Inform Res; 2024 Mar; 8(1):140-157. PubMed ID: 38273980 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis between convolutional neural network learned and engineered features: A case study on cardiac arrhythmia detection. Mahajan R; Kamaleswaran R; Akbilgic O Cardiovasc Digit Health J; 2020; 1(1):37-44. PubMed ID: 35265872 [TBL] [Abstract][Full Text] [Related]
18. Over-fitting suppression training strategies for deep learning-based atrial fibrillation detection. Zhang X; Li J; Cai Z; Zhang L; Chen Z; Liu C Med Biol Eng Comput; 2021 Jan; 59(1):165-173. PubMed ID: 33387183 [TBL] [Abstract][Full Text] [Related]
19. Semi-Supervised Learning for Automatic Atrial Fibrillation Detection in 24-Hour Holter Monitoring. Zhang P; Chen Y; Lin F; Wu S; Yang X; Li Q IEEE J Biomed Health Inform; 2022 Aug; 26(8):3791-3801. PubMed ID: 35536820 [TBL] [Abstract][Full Text] [Related]
20. A low-complexity algorithm for detection of atrial fibrillation using an ECG. Sadr N; Jayawardhana M; Pham TT; Tang R; Balaei AT; de Chazal P Physiol Meas; 2018 Jun; 39(6):064003. PubMed ID: 29791322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]